SOC计算方法:卡尔曼滤波算法

这篇具有很好参考价值的文章主要介绍了SOC计算方法:卡尔曼滤波算法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

卡尔曼滤波算法是一种经典的状态估计算法,它广泛应用于控制领域和信号处理领域。在电动汽车领域中,卡尔曼滤波算法也被广泛应用于电池管理系统中的电池状态估计。其中,电池的状态包括电池的剩余容量(SOC)、内阻、温度等。

并且卡尔曼滤波法也是一种比较精确的SOC估计方法,它通过测量电池的电流和电压来估计电池的SOC。该方法利用卡尔曼滤波算法对电池的状态进行估计,从而得到更准确的SOC估计值。接下来我们将介绍卡尔曼滤波算法的基本原理。

一、卡尔曼滤波算法

卡尔曼滤波算法是一种递归估计算法,它可以对随时间变化的状态进行估计。该算法的基本思想是将估计值和观测值结合起来,从而得到更准确的状态估计值。

卡尔曼滤波算法的基本步骤如下:

1)初始化

卡尔曼滤波算法的初始化需要确定系统的状态方程和观测方程,以及系统的初始状态和方差矩阵。其中,状态方程表示状态的变化规律,观测方程表示观测值和状态之间的关系。初始状态和方差矩阵则表示对系统初始状态的估计值和不确定性。

2)预测

在卡尔曼滤波算法中,预测步骤是根据系统的状态方程和控制量来预测下一个时刻的状态和方差矩阵。其中,状态方程表示当前状态和控制量之间的关系。

3)更新

在卡尔曼滤波算法中,更新步骤是根据观测值和预测值来更新系统的状态和方差矩阵。其中,观测方程表示观测值和状态之间的关系。

4)重复

卡尔曼滤波算法是一个递归算法,因此需要不断重复预测和更新步骤,以得到更准确的状态估计值。

卡尔曼滤波算法的核心思想是通过观测值和预测值之间的差异来调整状态估计值的权重,从而得到更准确的状态估计值。该算法的优点是可以处理非线性系统和带有噪声的系统,同时可以在不断观测到新数据时实时更新状态估计值。

二、使用卡尔曼滤波算法估计SOC

在电动汽车领域中,卡尔曼滤波算法常被用于电池SOC的估计。SOC的估计可以通过电池电压和电流的测量来实现。具体的估计方法如下:

1)确定状态方程和观测方程

电池的状态方程和观测方程可以表示为:

x k + 1 = A x k + B u k + w k x_{k+1} = Ax_k + Bu_k + w_k xk+1=Axk+Buk+wk

y k = C x k + v k y_k = Cx_k + v_k yk=Cxk+vk

其中, x k x_k xk表示电池的状态向量, u k u_k uk表示电池的控制向量, y k y_k yk表示电池的观测向量, w k w_k wk v k v_k vk分别表示过程噪声和观测噪声。矩阵 A A A B B B C C C分别表示状态方程和观测方程中的系数矩阵。

2)初始化

在SOC估计中,初始状态通常可以由开路电压法得到。初始方差矩阵可以设置为一个较大的值,表示对初始状态的不确定性较大。

3)预测

在预测步骤中,需要根据电池的状态方程和控制量来预测下一个时刻的电池状态和方差矩阵。其中,电池的状态向量包括SOC和内阻等参数,控制向量通常包括电流和温度等。预测方程可以表示为:

S O C k + 1 = S O C k + Δ t C b a t ( I k − I o c v ( S O C k , T k ) ) SOC_{k+1} = SOC_k + \frac{\Delta t}{C_{bat}}(I_k - I_{ocv}(SOC_k,T_k)) SOCk+1=SOCk+CbatΔt(IkIocv(SOCk,Tk))

其中, C b a t C_{bat} Cbat表示电池的容量, Δ t \Delta t Δt表示时间间隔, I k I_k Ik表示当前时刻的电流, I o c v ( S O C k , T k ) I_{ocv}(SOC_k,T_k) Iocv(SOCk,Tk)表示根据SOC和温度得到的电池的开路电压。

预测方程中的内阻等参数可以通过电化学阻抗谱等实验测量得到。预测方程中还可以考虑电池的寿命衰减等因素,以提高SOC估计的准确性。

4)更新

在更新步骤中,需要根据观测值和预测值来更新电池的状态和方差矩阵。观测向量可以通过电池电压测量得到,观测方程可以表示为:

V k = V o c v ( S O C k , T k ) − I R k + v k V_k = V_{ocv}(SOC_k,T_k) - IR_k + v_k Vk=Vocv(SOCk,Tk)IRk+vk

其中, V o c v ( S O C k , T k ) V_{ocv}(SOC_k,T_k) Vocv(SOCk,Tk)表示根据SOC和温度得到的电池的开路电压, R k R_k Rk表示电池的内阻, v k v_k vk表示观测噪声。

根据预测值和观测值,可以得到卡尔曼增益矩阵 K k K_k Kk,以及状态和方差的更新公式:

x k = x k + K k ( y k − C x k ) x_k = x_k + K_k(y_k - Cx_k) xk=xk+Kk(ykCxk)

P k = ( I − K k C ) P k P_k = (I - K_kC)P_k Pk=(IKkC)Pk

其中, I I I表示单位矩阵, P k P_k Pk表示状态方程的方差矩阵, K k K_k Kk表示卡尔曼增益矩阵。

5)重复

SOC估计是一个动态过程,需要不断重复预测和更新步骤,以得到更准确的SOC估计值。

三 、结论

卡尔曼滤波算法是一种常用的状态估计算法,可以在处理非线性系统和带有噪声的系统时得到较为准确的状态估计值。在电动汽车领域中,卡尔曼滤波算法常被用于电池SOC的估计。SOC的估计可以通过电池电压和电流的测量来实现,具体的估计方法包括确定状态方程和观测方程、初始化、预测、更新和重复等步骤。

在实际应用中,SOC估计需要考虑电池寿命衰减、内阻等因素的影响,以提高估计的准确性。此外,卡尔曼滤波算法也存在一些局限性,文章来源地址https://www.toymoban.com/news/detail-783517.html

到了这里,关于SOC计算方法:卡尔曼滤波算法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • RBF-UKF径向基神经网络结合无迹卡尔曼滤波估计锂离子电池SOC(附MATLAB代码)RBF神经网络训练部分

    1.清空变量 2.导入数据用以RBF神经网络训练,一共14组,训练数据P(第一列为电压值,第二列为SOC值,第三列为电流值。),并将所有数据存储在变量PP中,所有电压数据存储在变量TT中。 3. 用第1、2、3、4、5组数据来训练网络 , 用第六组数据来测试网络的精度 。   4.建立

    2023年04月22日
    浏览(60)
  • 【算法系列】卡尔曼滤波算法

    ·【算法系列】卡尔曼滤波算法 ·【算法系列】非线性最小二乘求解-直接求解法 ·【算法系列】非线性最小二乘求解-梯度下降法 ·【算法系列】非线性最小二乘-高斯牛顿法  ·【算法系列】非线性最小二乘-列文伯格马夸尔和狗腿算法  文章目录 系列文章 文章目录 前言 一、

    2024年02月12日
    浏览(41)
  • 卡尔曼滤波算法原理及示例

      例程:物体做匀速运动每秒运动1m,观测器观测方差为1m

    2024年02月15日
    浏览(43)
  • 算法介绍及实现——卡尔曼滤波

            本文主要介绍卡尔曼滤波的推导过程及建模步骤,是网站的学习笔记。本文主要是通过例子来引出卡尔曼滤波的建模思想及算法步骤。 参考网站:(这个网站讲得真的很详细很清楚,层层递进,逻辑清晰) Kalman Filter Tutorial https://www.kalmanfilter.net/ 目录 一、引言

    2024年02月14日
    浏览(45)
  • 滤波算法 | 无迹卡尔曼滤波(UKF)算法及其MATLAB实现

    本文接着分享位姿跟踪和滤波算法中用到的一些常用程序,希望为后来者减少一些基础性内容的工作时间。以往分享总结见文章:位姿跟踪 | 相关内容目录和链接总结(不断更新中~~~) 本文分享无迹卡尔曼滤波(UKF)算法的一些基本公式和MATLAB程序。 首先简单介绍一下UKF滤

    2023年04月15日
    浏览(50)
  • 卡尔曼滤波算法的五大核心公式含义

    在SLAM中经常会用的卡尔曼滤波算法,这里简单的记录一下卡尔曼滤波算法的五大核心公式,以便后续查询,公式的推导不在作赘述,直接放出卡尔曼滤波算法的五大核心公式: 1. 状态更新方程 x k ^ = F k x ^ k − 1 + B k u k hat{x_k}={F_k}hat{x}_{k-1}+{B_k}{u_k} x k ​ ^ ​ = F k ​ x ^ k −

    2024年02月05日
    浏览(44)
  • 线性卡尔曼跟踪融合滤波算法(Matlab仿真)

            卡尔曼滤波的原理和理论在CSDN已有很多文章,这里不再赘述,仅分享个人的理解和Matlab仿真代码。         假设目标的状态为X =  [x, y, vx, vy],符合匀速直线运动目标,也即                  其中F为状态转移矩阵,                  在匀速直线(const velo

    2024年01月17日
    浏览(43)
  • (二)多传感器拓展卡尔曼滤波(EKF)算法

    目录 前言 一、基础知识 (一)拓展卡尔曼滤波 (二)简单凸组合融合 二、模型构建 (一)状态和观测模型构建 (二)单个滤波器仿真 (三)融合滤波 三、结果展示 总结         本文介绍了一种用于多传感器的拓展卡尔曼滤波(EKF)算法。首先,介绍了EKF中运用到的

    2024年04月28日
    浏览(52)
  • 【算法】基于STM32的MPU6050卡尔曼滤波算法(入门级)

    卡尔曼滤波(Kalman filtering)是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。详情见:卡尔曼滤波简介 MPU6050的解算主要有三种姿态融合算法:

    2024年02月01日
    浏览(54)
  • (三)多传感器平方根容积卡尔曼滤波(SRCKF)算法

    目录 前言 一、基础知识 (一)平方根容积卡尔曼滤波 (二)简单凸组合融合 二、模型构建 (一)状态和观测模型构建 (二)单个滤波器仿真 (三)融合滤波 三、结果展示 总结         本博客介绍了一种用于多传感器的平方根容积卡尔曼滤波(SRCKF)算法。首先,介

    2024年01月21日
    浏览(102)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包