本文仅供学习使用,总结很多本现有讲述运动学或动力学书籍后的总结,从矢量的角度进行分析,方法比较传统,但更易理解,并且现有的看似抽象方法,两者本质上并无不同。
2024年底本人学位论文发表后方可摘抄
若有帮助请引用
本文参考:.
食用方法
求解逻辑:速度与加速度都是在知道角速度与角加速度的前提下——旋转运动更重要
所求得的速度表达-需要考虑是否为刚体相对固定点!
旋转矩阵?转换矩阵?有什么意义和性质?——与角速度与角加速度的关系务必自己推导全部公式,并理解每个符号的含义
4. 刚体的速度与角速度
对于运动坐标系下任意一点
P
i
P_{\mathrm{i}}
Pi而言,有:
R
⃗
P
F
=
R
⃗
M
F
+
[
Q
M
F
]
R
⃗
P
i
M
⇒
v
⃗
P
F
=
v
⃗
M
F
+
[
Q
˙
M
F
]
R
⃗
P
i
M
+
[
Q
M
F
]
R
⃗
˙
P
i
M
=
ω
⃗
F
×
R
⃗
P
F
=
ω
⃗
~
F
R
⃗
P
F
=
ω
⃗
~
F
(
R
⃗
M
F
+
[
Q
M
F
]
R
⃗
P
i
M
)
⇒
[
Q
˙
M
F
]
R
⃗
P
i
M
+
[
Q
M
F
]
R
⃗
˙
P
i
M
=
ω
⃗
~
F
[
Q
M
F
]
R
⃗
P
i
M
⇒
v
⃗
P
i
M
=
(
[
Q
M
F
]
T
ω
⃗
~
F
[
Q
M
F
]
−
[
Q
M
F
]
T
[
Q
˙
M
F
]
)
R
⃗
P
i
M
=
(
(
[
Q
M
F
]
T
ω
⃗
F
)
~
−
[
Q
M
F
]
T
[
Q
˙
M
F
]
)
R
⃗
P
i
M
=
(
ω
⃗
~
M
−
[
Q
M
F
]
T
[
Q
˙
M
F
]
)
R
⃗
P
i
M
\begin{split} &\vec{R}_{\mathrm{P}}^{F}=\vec{R}_{\mathrm{M}}^{F}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \\ &\Rightarrow \vec{v}_{\mathrm{P}}^{F}=\vec{v}_{\mathrm{M}}^{F}+\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{P}_{\mathrm{i}}}^{M}=\vec{\omega}^F\times \vec{R}_{\mathrm{P}}^{F}=\tilde{\vec{\omega}}^F\vec{R}_{\mathrm{P}}^{F}=\tilde{\vec{\omega}}^F\left( \vec{R}_{\mathrm{M}}^{F}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) \\ &\Rightarrow \left[ \dot{Q}_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{P}_{\mathrm{i}}}^{M}=\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \\ &\Rightarrow \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}=\left( \left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] -\left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \right) \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}=\left( \widetilde{\left( \left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}\vec{\omega}^F \right) }-\left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \right) \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}=\left( \tilde{\vec{\omega}}^M-\left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \right) \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \end{split}
RPF=RMF+[QMF]RPiM⇒vPF=vMF+[Q˙MF]RPiM+[QMF]R˙PiM=ωF×RPF=ω~FRPF=ω~F(RMF+[QMF]RPiM)⇒[Q˙MF]RPiM+[QMF]R˙PiM=ω~F[QMF]RPiM⇒vPiM=([QMF]Tω~F[QMF]−[QMF]T[Q˙MF])RPiM=(([QMF]TωF)
−[QMF]T[Q˙MF])RPiM=(ω~M−[QMF]T[Q˙MF])RPiM
因此,当
P
i
P_{\mathrm{i}}
Pi为刚体上的固定点时,有:
v
⃗
P
i
M
=
0
\vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}=0
vPiM=0,进而可知(下式仅当
P
i
P_{\mathrm{i}}
Pi为刚体上的固定点时成立):
[
Q
M
F
]
T
ω
⃗
~
F
[
Q
M
F
]
−
[
Q
M
F
]
T
[
Q
˙
M
F
]
=
0
⇒
ω
⃗
~
F
=
[
Q
˙
M
F
]
[
Q
M
F
]
T
ω
⃗
~
M
−
[
Q
M
F
]
T
[
Q
˙
M
F
]
=
0
⇒
ω
⃗
~
M
=
[
Q
M
F
]
T
[
Q
˙
M
F
]
\begin{split} \left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] -\left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}\left[ \dot{Q}_{\mathrm{M}}^{F} \right] =0&\Rightarrow \tilde{\vec{\omega}}^F=\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}} \\ \tilde{\vec{\omega}}^M-\left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}\left[ \dot{Q}_{\mathrm{M}}^{F} \right] =0&\Rightarrow \tilde{\vec{\omega}}^M=\left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \end{split}
[QMF]Tω~F[QMF]−[QMF]T[Q˙MF]=0ω~M−[QMF]T[Q˙MF]=0⇒ω~F=[Q˙MF][QMF]T⇒ω~M=[QMF]T[Q˙MF]
观察上式,角速度本身是一个向量,与刚体实际绕哪根确定的轴旋转并没有关系,而是需要一个向量作为其回转方向——而真正影响到速度的表达,则与所在的观测点有关——在地球上观测月球绕地球回转,而在太阳上观测月球则作更为复杂的运动——与所选的 R ⃗ \vec{R} R有关
对转换矩阵
[
Q
M
F
]
T
\left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}
[QMF]T而言,有:
[
Q
M
F
]
T
[
Q
M
F
]
=
E
⇒
[
Q
˙
M
F
]
T
[
Q
M
F
]
+
[
Q
M
F
]
T
[
Q
˙
M
F
]
=
0
⇒
[
Q
˙
M
F
]
T
[
Q
M
F
]
+
[
[
Q
˙
M
F
]
T
[
Q
M
F
]
]
T
=
0
\begin{split} &\left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}\left[ Q_{\mathrm{M}}^{F} \right] =E \\ \Rightarrow &\left[ \dot{Q}_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}\left[ Q_{\mathrm{M}}^{F} \right] +\left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}\left[ \dot{Q}_{\mathrm{M}}^{F} \right] =0 \\ \Rightarrow &\left[ \dot{Q}_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}\left[ Q_{\mathrm{M}}^{F} \right] +\left[ \left[ \dot{Q}_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}\left[ Q_{\mathrm{M}}^{F} \right] \right] ^{\mathrm{T}}=0 \end{split}
⇒⇒[QMF]T[QMF]=E[Q˙MF]T[QMF]+[QMF]T[Q˙MF]=0[Q˙MF]T[QMF]+[[Q˙MF]T[QMF]]T=0
即,
[
Q
˙
M
F
]
T
[
Q
M
F
]
\left[ \dot{Q}_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}\left[ Q_{\mathrm{M}}^{F} \right]
[Q˙MF]T[QMF]为反(斜)对称矩阵。
因此,对于矩阵
ω
⃗
~
F
\tilde{\vec{\omega}}^F
ω~F与
ω
⃗
~
M
\tilde{\vec{\omega}}^M
ω~M具有如下转换关系(下式仅当
P
i
P_{\mathrm{i}}
Pi为刚体上的固定点时成立):
ω
⃗
~
M
=
[
Q
M
F
]
T
ω
⃗
~
F
[
Q
M
F
]
ω
⃗
~
F
=
[
Q
M
F
]
ω
⃗
~
M
[
Q
M
F
]
T
\begin{split} \tilde{\vec{\omega}}^M&=\left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \\ \tilde{\vec{\omega}}^F&=\left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\omega}}^M\left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}} \end{split}
ω~Mω~F=[QMF]Tω~F[QMF]=[QMF]ω~M[QMF]T
进而可将上式中的项term
[
Q
˙
M
F
]
R
⃗
P
i
M
\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}
[Q˙MF]RPiM改写为(下式仅当
P
i
P_{\mathrm{i}}
Pi为刚体上的固定点时成立):
[
Q
˙
M
F
]
R
⃗
P
i
M
=
{
ω
⃗
~
F
[
Q
M
F
]
R
⃗
P
i
M
=
ω
⃗
~
F
R
⃗
P
i
F
=
ω
⃗
F
×
R
⃗
P
i
F
[
Q
M
F
]
ω
⃗
~
M
R
⃗
P
i
M
=
[
Q
M
F
]
(
ω
⃗
M
×
R
⃗
P
i
M
)
\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}=\begin{cases} \tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}=\tilde{\vec{\omega}}^F\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{F}=\vec{\omega}^F\times \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{F}\\ \left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{\omega}}^M\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}=\left[ Q_{\mathrm{M}}^{F} \right] \left( \vec{\omega}^M\times \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right)\\ \end{cases}
[Q˙MF]RPiM=⎩
⎨
⎧ω~F[QMF]RPiM=ω~FRPiF=ωF×RPiF[QMF]ω~MRPiM=[QMF](ωM×RPiM)
4.1 角速度的表达
4.1.1 欧拉参数表示角速度
结合定义矩阵: B 3 × 4 = [ − q 2 q 1 − q 4 q 3 − q 3 q 4 q 1 − q 2 − q 4 − q 3 q 2 q 1 ] B_{3\times 4}=\left[ \begin{array}{cccc} -q_2& q_1& -q_4& q_3\\ -q_3& q_4& q_1& -q_2\\ -q_4& -q_3& q_2& q_1\\ \end{array} \right] B3×4= −q2−q3−q4q1q4−q3−q4q1q2q3−q2q1 B ˉ 3 × 4 = [ − q 2 q 1 q 4 − q 3 − q 3 − q 4 q 1 q 2 − q 4 q 3 − q 2 q 1 ] \bar{B}_{3\times 4}=\left[ \begin{array}{cccc} -q_2& q_1& q_4& -q_3\\ -q_3& -q_4& q_1& q_2\\ -q_4& q_3& -q_2& q_1\\ \end{array} \right] Bˉ3×4= −q2−q3−q4q1−q4q3q4q1−q2−q3q2q1 , 带入同样的式子可得:
ω
⃗
~
F
=
2
B
ˉ
B
ˉ
˙
T
ω
⃗
~
M
=
2
B
B
˙
T
\begin{split} \tilde{\vec{\omega}}^F&=2\bar{B}\dot{\bar{B}}^{\mathrm{T}} \\ \tilde{\vec{\omega}}^M&=2B\dot{B}^{\mathrm{T}} \end{split}
ω~Fω~M=2BˉBˉ˙T=2BB˙T
将上式展开,由四元数的归一化可知:
q
˙
1
q
1
+
q
˙
2
q
2
+
q
˙
3
q
3
+
q
˙
4
q
4
=
0
\dot{q}_1q_1+\dot{q}_2q_2+\dot{q}_3q_3+\dot{q}_4q_4=0
q˙1q1+q˙2q2+q˙3q3+q˙4q4=0,可得:
[
w
1
F
w
2
F
w
3
F
]
=
2
[
q
˙
4
q
3
−
q
˙
3
q
4
+
q
˙
2
q
1
−
q
˙
1
q
2
q
˙
2
q
4
−
q
˙
1
q
3
+
q
˙
4
q
2
−
q
˙
3
q
1
q
˙
3
q
2
−
q
˙
4
q
1
+
q
˙
1
q
4
−
q
˙
2
q
3
]
[
w
1
M
w
2
M
w
3
M
]
=
2
[
q
4
q
˙
3
−
q
3
q
˙
4
−
q
2
q
˙
1
+
q
1
q
˙
2
q
2
q
˙
4
+
q
1
q
˙
3
−
q
4
q
˙
2
−
q
3
q
˙
1
q
3
q
˙
2
−
q
4
q
˙
1
+
q
1
q
˙
4
−
q
2
q
˙
3
]
\begin{split} \left[ \begin{array}{c} {w_1}^F\\ {w_2}^F\\ {w_3}^F\\ \end{array} \right] &=2\left[ \begin{array}{c} \dot{q}_4q_3-\dot{q}_3q_4+\dot{q}_2q_1-\dot{q}_1q_2\\ \dot{q}_2q_4-\dot{q}_1q_3+\dot{q}_4q_2-\dot{q}_3q_1\\ \dot{q}_3q_2-\dot{q}_4q_1+\dot{q}_1q_4-\dot{q}_2q_3\\ \end{array} \right] \\ \left[ \begin{array}{c} {w_1}^M\\ {w_2}^M\\ {w_3}^M\\ \end{array} \right] &=2\left[ \begin{array}{c} q_4\dot{q}_3-q_3\dot{q}_4-q_2\dot{q}_1+q_1\dot{q}_2\\ q_2\dot{q}_4+q_1\dot{q}_3-q_4\dot{q}_2-q_3\dot{q}_1\\ q_3\dot{q}_2-q_4\dot{q}_1+q_1\dot{q}_4-q_2\dot{q}_3\\ \end{array} \right] \end{split}
w1Fw2Fw3F
w1Mw2Mw3M
=2
q˙4q3−q˙3q4+q˙2q1−q˙1q2q˙2q4−q˙1q3+q˙4q2−q˙3q1q˙3q2−q˙4q1+q˙1q4−q˙2q3
=2
q4q˙3−q3q˙4−q2q˙1+q1q˙2q2q˙4+q1q˙3−q4q˙2−q3q˙1q3q˙2−q4q˙1+q1q˙4−q2q˙3
继续观察上式,将上式进行化简:
ω
⃗
F
=
2
B
q
⃗
˙
=
−
2
B
˙
q
⃗
ω
⃗
M
=
2
B
ˉ
q
⃗
˙
=
−
2
B
ˉ
˙
q
⃗
\vec{\omega}^F=2B\dot{\vec{q}}=-2\dot{B}\vec{q} \\ \vec{\omega}^M=2\bar{B}\dot{\vec{q}}=-2\dot{\bar{B}}\vec{q}
ωF=2Bq˙=−2B˙qωM=2Bˉq˙=−2Bˉ˙q
进而可将
[
Q
˙
M
F
]
R
⃗
P
i
M
=
[
Q
M
F
]
(
ω
⃗
M
×
R
⃗
P
i
M
)
\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}=\left[ Q_{\mathrm{M}}^{F} \right] \left( \vec{\omega}^M\times \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right)
[Q˙MF]RPiM=[QMF](ωM×RPiM)改写为(下式仅当
P
i
P_{\mathrm{i}}
Pi为刚体上的固定点时成立):
[
Q
˙
M
F
]
R
⃗
P
i
M
=
[
Q
M
F
]
(
ω
⃗
M
×
R
⃗
P
i
M
)
=
−
[
Q
M
F
]
(
R
⃗
P
i
M
×
ω
⃗
M
)
=
−
[
Q
M
F
]
R
⃗
~
P
i
M
(
2
B
ˉ
q
⃗
˙
)
\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}=\left[ Q_{\mathrm{M}}^{F} \right] \left( \vec{\omega}^M\times \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) =-\left[ Q_{\mathrm{M}}^{F} \right] \left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}\times \vec{\omega}^M \right) =-\left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{R}}_{\mathrm{P}_{\mathrm{i}}}^{M}\left( 2\bar{B}\dot{\vec{q}} \right)
[Q˙MF]RPiM=[QMF](ωM×RPiM)=−[QMF](RPiM×ωM)=−[QMF]R~PiM(2Bˉq˙)
因为所有表达方式都能转换成欧拉参数-四元数的形式,因此上式在计算过程中具有普适性。
进而可知:
∂
(
[
Q
M
F
]
R
⃗
P
i
M
)
∂
q
⃗
=
−
[
Q
M
F
]
R
⃗
~
P
i
M
(
2
B
ˉ
)
\frac{\partial \left( \left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right)}{\partial \vec{q}}=-\left[ Q_{\mathrm{M}}^{F} \right] \tilde{\vec{R}}_{\mathrm{P}_{\mathrm{i}}}^{M}\left( 2\bar{B} \right)
∂q∂([QMF]RPiM)=−[QMF]R~PiM(2Bˉ)
4.1.2 轴角参数表示角速度
将
[
θ
v
1
v
2
v
3
]
=
[
2
a
r
c
cos
(
q
1
)
q
2
sin
θ
2
q
3
sin
θ
2
q
4
sin
θ
2
]
\left[ \begin{array}{c} \theta\\ v_1\\ v_2\\ v_3\\ \end{array} \right] =\left[ \begin{array}{c} 2\mathrm{arc}\cos \left( q_1 \right)\\ \frac{q_2}{\sin \frac{\theta}{2}}\\ \frac{q_3}{\sin \frac{\theta}{2}}\\ \frac{q_4}{\sin \frac{\theta}{2}}\\ \end{array} \right]
θv1v2v3
=
2arccos(q1)sin2θq2sin2θq3sin2θq4
带入
[
w
1
F
w
2
F
w
3
F
]
=
2
[
q
˙
4
q
3
−
q
˙
3
q
4
+
q
˙
2
q
1
−
q
˙
1
q
2
q
˙
2
q
4
−
q
˙
1
q
3
+
q
˙
4
q
2
−
q
˙
3
q
1
q
˙
3
q
2
−
q
˙
4
q
1
+
q
˙
1
q
4
−
q
˙
2
q
3
]
,
[
w
1
M
w
2
M
w
3
M
]
=
2
[
q
4
q
˙
3
−
q
3
q
˙
4
−
q
2
q
˙
1
+
q
1
q
˙
2
q
2
q
˙
4
+
q
1
q
˙
3
−
q
4
q
˙
2
−
q
3
q
˙
1
q
3
q
˙
2
−
q
4
q
˙
1
+
q
1
q
˙
4
−
q
2
q
˙
3
]
\left[ \begin{array}{c} {w_1}^F\\ {w_2}^F\\ {w_3}^F\\ \end{array} \right] =2\left[ \begin{array}{c} \dot{q}_4q_3-\dot{q}_3q_4+\dot{q}_2q_1-\dot{q}_1q_2\\ \dot{q}_2q_4-\dot{q}_1q_3+\dot{q}_4q_2-\dot{q}_3q_1\\ \dot{q}_3q_2-\dot{q}_4q_1+\dot{q}_1q_4-\dot{q}_2q_3\\ \end{array} \right] , \left[ \begin{array}{c} {w_1}^M\\ {w_2}^M\\ {w_3}^M\\ \end{array} \right] =2\left[ \begin{array}{c} q_4\dot{q}_3-q_3\dot{q}_4-q_2\dot{q}_1+q_1\dot{q}_2\\ q_2\dot{q}_4+q_1\dot{q}_3-q_4\dot{q}_2-q_3\dot{q}_1\\ q_3\dot{q}_2-q_4\dot{q}_1+q_1\dot{q}_4-q_2\dot{q}_3\\ \end{array} \right]
w1Fw2Fw3F
=2
q˙4q3−q˙3q4+q˙2q1−q˙1q2q˙2q4−q˙1q3+q˙4q2−q˙3q1q˙3q2−q˙4q1+q˙1q4−q˙2q3
,
w1Mw2Mw3M
=2
q4q˙3−q3q˙4−q2q˙1+q1q˙2q2q˙4+q1q˙3−q4q˙2−q3q˙1q3q˙2−q4q˙1+q1q˙4−q2q˙3
可得:
[
w
1
F
w
2
F
w
3
F
]
=
[
2
(
v
˙
3
v
2
−
v
˙
2
v
3
)
sin
2
θ
2
+
v
˙
1
sin
θ
+
θ
˙
v
1
2
(
v
˙
1
v
3
−
v
˙
3
v
1
)
sin
2
θ
2
+
v
˙
2
sin
θ
+
θ
˙
v
2
2
(
v
˙
2
v
1
−
v
˙
1
v
2
)
sin
2
θ
2
+
v
˙
3
sin
θ
+
θ
˙
v
3
]
[
w
1
M
w
2
M
w
3
M
]
=
[
2
(
v
3
v
˙
2
−
v
2
v
˙
3
)
sin
2
θ
2
+
v
˙
1
sin
θ
+
θ
˙
v
1
2
(
v
1
v
˙
3
−
v
3
v
˙
1
)
sin
2
θ
2
+
v
˙
2
sin
θ
+
θ
˙
v
2
2
(
v
2
v
˙
1
−
v
1
v
˙
2
)
sin
2
θ
2
+
v
˙
3
sin
θ
+
θ
˙
v
3
]
\begin{split} \left[ \begin{array}{c} {w_1}^F\\ {w_2}^F\\ {w_3}^F\\ \end{array} \right] &=\left[ \begin{array}{c} 2\left( \dot{v}_3v_2-\dot{v}_2v_3 \right) \sin ^2\frac{\theta}{2}+\dot{v}_1\sin \theta +\dot{\theta}v_1\\ 2\left( \dot{v}_1v_3-\dot{v}_3v_1 \right) \sin ^2\frac{\theta}{2}+\dot{v}_2\sin \theta +\dot{\theta}v_2\\ 2\left( \dot{v}_2v_1-\dot{v}_1v_2 \right) \sin ^2\frac{\theta}{2}+\dot{v}_3\sin \theta +\dot{\theta}v_3\\ \end{array} \right] \\ \left[ \begin{array}{c} {w_1}^M\\ {w_2}^M\\ {w_3}^M\\ \end{array} \right] &=\left[ \begin{array}{c} 2\left( v_3\dot{v}_2-v_2\dot{v}_3 \right) \sin ^2\frac{\theta}{2}+\dot{v}_1\sin \theta +\dot{\theta}v_1\\ 2\left( v_1\dot{v}_3-v_3\dot{v}_1 \right) \sin ^2\frac{\theta}{2}+\dot{v}_2\sin \theta +\dot{\theta}v_2\\ 2\left( v_2\dot{v}_1-v_1\dot{v}_2 \right) \sin ^2\frac{\theta}{2}+\dot{v}_3\sin \theta +\dot{\theta}v_3\\ \end{array} \right] \end{split}
w1Fw2Fw3F
w1Mw2Mw3M
=
2(v˙3v2−v˙2v3)sin22θ+v˙1sinθ+θ˙v12(v˙1v3−v˙3v1)sin22θ+v˙2sinθ+θ˙v22(v˙2v1−v˙1v2)sin22θ+v˙3sinθ+θ˙v3
=
2(v3v˙2−v2v˙3)sin22θ+v˙1sinθ+θ˙v12(v1v˙3−v3v˙1)sin22θ+v˙2sinθ+θ˙v22(v2v˙1−v1v˙2)sin22θ+v˙3sinθ+θ˙v3
整理为:
ω
⃗
F
=
2
v
⃗
F
×
v
⃗
˙
F
sin
2
θ
2
+
v
⃗
˙
F
sin
θ
+
θ
˙
v
⃗
F
ω
⃗
M
=
2
v
⃗
˙
F
×
v
⃗
F
sin
2
θ
2
+
v
⃗
˙
F
sin
θ
+
θ
˙
v
⃗
F
\begin{split} \vec{\omega}^F&=2\vec{v}^F\times \dot{\vec{v}}^F\sin ^2\frac{\theta}{2}+\dot{\vec{v}}^F\sin \theta +\dot{\theta}\vec{v}^F \\ \vec{\omega}^M&=2\dot{\vec{v}}^F\times \vec{v}^F\sin ^2\frac{\theta}{2}+\dot{\vec{v}}^F\sin \theta +\dot{\theta}\vec{v}^F \end{split}
ωFωM=2vF×v˙Fsin22θ+v˙Fsinθ+θ˙vF=2v˙F×vFsin22θ+v˙Fsinθ+θ˙vF文章来源:https://www.toymoban.com/news/detail-783815.html
4.1.3 欧拉角表示角速度
对于ZYX欧拉角而言,有:
{
[
Q
M
F
]
=
[
Q
F
3
(
M
)
F
2
(
k
⃗
F
,
γ
)
]
[
Q
F
2
F
1
(
j
⃗
F
,
β
)
]
[
Q
F
1
F
(
i
⃗
F
,
α
)
]
ω
⃗
~
F
=
[
Q
˙
M
F
]
[
Q
M
F
]
T
ω
⃗
~
F
=
{
[
Q
˙
F
3
(
M
)
F
2
(
k
⃗
F
,
γ
)
]
[
Q
F
2
F
1
(
j
⃗
F
,
β
)
]
[
Q
F
1
F
(
i
⃗
F
,
α
)
]
⋅
[
Q
F
1
F
(
i
⃗
F
,
α
)
]
T
[
Q
F
2
F
1
(
j
⃗
F
,
β
)
]
T
[
Q
F
3
(
M
)
F
2
(
k
⃗
F
,
γ
)
]
T
+
[
Q
F
3
(
M
)
F
2
(
k
⃗
F
,
γ
)
]
[
Q
˙
F
2
F
1
(
j
⃗
F
,
β
)
]
[
Q
F
1
F
(
i
⃗
F
,
α
)
]
⋅
[
Q
F
1
F
(
i
⃗
F
,
α
)
]
T
[
Q
F
2
F
1
(
j
⃗
F
,
β
)
]
T
[
Q
F
3
(
M
)
F
2
(
k
⃗
F
,
γ
)
]
T
+
[
Q
F
3
(
M
)
F
2
(
k
⃗
F
,
γ
)
]
[
Q
F
2
F
1
(
j
⃗
F
,
β
)
]
[
Q
˙
F
1
F
(
i
⃗
F
,
α
)
]
⋅
[
Q
F
1
F
(
i
⃗
F
,
α
)
]
T
[
Q
F
2
F
1
(
j
⃗
F
,
β
)
]
T
[
Q
F
3
(
M
)
F
2
(
k
⃗
F
,
γ
)
]
T
ω
⃗
~
F
=
{
[
Q
˙
F
3
(
M
)
F
2
(
k
⃗
F
,
γ
)
]
[
Q
F
3
(
M
)
F
2
(
k
⃗
F
,
γ
)
]
T
+
[
Q
F
3
(
M
)
F
2
(
k
⃗
F
,
γ
)
]
[
Q
˙
F
2
F
1
(
j
⃗
F
,
β
)
]
[
Q
F
2
F
1
(
j
⃗
F
,
β
)
]
T
[
Q
F
3
(
M
)
F
2
(
k
⃗
F
,
γ
)
]
T
+
[
[
Q
F
3
(
M
)
F
2
(
k
⃗
F
,
γ
)
]
[
Q
F
2
F
1
(
j
⃗
F
,
β
)
]
]
[
Q
˙
F
1
F
(
i
⃗
F
,
α
)
]
⋅
[
Q
F
1
F
(
i
⃗
F
,
α
)
]
T
[
[
Q
F
3
(
M
)
F
2
(
k
⃗
F
,
γ
)
]
[
Q
F
2
F
1
(
j
⃗
F
,
β
)
]
]
T
ω
⃗
~
F
=
ω
⃗
~
F
3
(
M
)
F
2
+
[
Q
F
3
(
M
)
F
2
(
k
⃗
F
,
γ
)
]
ω
⃗
~
F
2
F
1
~
+
[
[
Q
F
3
(
M
)
F
2
(
k
⃗
F
,
γ
)
]
[
Q
F
2
F
1
(
j
⃗
F
,
β
)
]
]
ω
⃗
~
F
1
F
~
⇒
ω
⃗
F
=
ω
⃗
F
3
(
M
)
F
2
+
[
Q
F
3
(
M
)
F
2
(
k
⃗
F
,
γ
)
]
ω
⃗
F
2
F
1
+
[
[
Q
F
3
(
M
)
F
2
(
k
⃗
F
,
γ
)
]
[
Q
F
2
F
1
(
j
⃗
F
,
β
)
]
]
ω
⃗
F
1
F
⇒
ω
⃗
F
=
[
0
0
γ
˙
]
+
[
cos
γ
−
sin
γ
0
sin
γ
cos
γ
0
0
0
1
]
[
0
β
˙
0
]
+
[
cos
γ
−
sin
γ
0
sin
γ
cos
γ
0
0
0
1
]
[
cos
β
0
sin
β
0
1
0
−
sin
β
0
cos
β
]
[
α
˙
0
0
]
⇒
ω
⃗
F
=
[
cos
β
cos
γ
−
sin
γ
0
cos
β
sin
γ
cos
γ
0
−
sin
β
0
1
]
[
α
˙
β
˙
γ
˙
]
\begin{split} &\begin{cases} \left[ Q_{\mathrm{M}}^{F} \right] =\left[ Q_{\mathrm{F}_3\left( M \right)}^{F_2}\left( \vec{k}^F,\gamma \right) \right] \left[ Q_{\mathrm{F}_2}^{F_1}\left( \vec{j}^F,\beta \right) \right] \left[ Q_{\mathrm{F}_1}^{F}\left( \vec{i}^F,\alpha \right) \right]\\ \tilde{\vec{\omega}}^F=\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}\\ \end{cases} \\ \tilde{\vec{\omega}}^F&=\begin{cases} \left[ \dot{Q}_{\mathrm{F}_3\left( M \right)}^{F_2}\left( \vec{k}^F,\gamma \right) \right] \left[ Q_{\mathrm{F}_2}^{F_1}\left( \vec{j}^F,\beta \right) \right] \left[ Q_{\mathrm{F}_1}^{F}\left( \vec{i}^F,\alpha \right) \right] \cdot \left[ Q_{\mathrm{F}_1}^{F}\left( \vec{i}^F,\alpha \right) \right] ^{\mathrm{T}}\left[ Q_{\mathrm{F}_2}^{F_1}\left( \vec{j}^F,\beta \right) \right] ^{\mathrm{T}}\left[ Q_{\mathrm{F}_3\left( M \right)}^{F_2}\left( \vec{k}^F,\gamma \right) \right] ^{\mathrm{T}}+\\ \left[ Q_{\mathrm{F}_3\left( M \right)}^{F_2}\left( \vec{k}^F,\gamma \right) \right] \left[ \dot{Q}_{\mathrm{F}_2}^{F_1}\left( \vec{j}^F,\beta \right) \right] \left[ Q_{\mathrm{F}_1}^{F}\left( \vec{i}^F,\alpha \right) \right] \cdot \left[ Q_{\mathrm{F}_1}^{F}\left( \vec{i}^F,\alpha \right) \right] ^{\mathrm{T}}\left[ Q_{\mathrm{F}_2}^{F_1}\left( \vec{j}^F,\beta \right) \right] ^{\mathrm{T}}\left[ Q_{\mathrm{F}_3\left( M \right)}^{F_2}\left( \vec{k}^F,\gamma \right) \right] ^{\mathrm{T}}+\\ \left[ Q_{\mathrm{F}_3\left( M \right)}^{F_2}\left( \vec{k}^F,\gamma \right) \right] \left[ Q_{\mathrm{F}_2}^{F_1}\left( \vec{j}^F,\beta \right) \right] \left[ \dot{Q}_{\mathrm{F}_1}^{F}\left( \vec{i}^F,\alpha \right) \right] \cdot \left[ Q_{\mathrm{F}_1}^{F}\left( \vec{i}^F,\alpha \right) \right] ^{\mathrm{T}}\left[ Q_{\mathrm{F}_2}^{F_1}\left( \vec{j}^F,\beta \right) \right] ^{\mathrm{T}}\left[ Q_{\mathrm{F}_3\left( M \right)}^{F_2}\left( \vec{k}^F,\gamma \right) \right] ^{\mathrm{T}}\\ \end{cases} \\ \tilde{\vec{\omega}}^F&=\begin{cases} \left[ \dot{Q}_{\mathrm{F}_3\left( M \right)}^{F_2}\left( \vec{k}^F,\gamma \right) \right] \left[ Q_{\mathrm{F}_3\left( M \right)}^{F_2}\left( \vec{k}^F,\gamma \right) \right] ^{\mathrm{T}}+\left[ Q_{\mathrm{F}_3\left( M \right)}^{F_2}\left( \vec{k}^F,\gamma \right) \right] \left[ \dot{Q}_{\mathrm{F}_2}^{F_1}\left( \vec{j}^F,\beta \right) \right] \left[ Q_{\mathrm{F}_2}^{F_1}\left( \vec{j}^F,\beta \right) \right] ^{\mathrm{T}}\left[ Q_{\mathrm{F}_3\left( M \right)}^{F_2}\left( \vec{k}^F,\gamma \right) \right] ^{\mathrm{T}}\\ +\left[ \left[ Q_{\mathrm{F}_3\left( M \right)}^{F_2}\left( \vec{k}^F,\gamma \right) \right] \left[ Q_{\mathrm{F}_2}^{F_1}\left( \vec{j}^F,\beta \right) \right] \right] \left[ \dot{Q}_{\mathrm{F}_1}^{F}\left( \vec{i}^F,\alpha \right) \right] \cdot \left[ Q_{\mathrm{F}_1}^{F}\left( \vec{i}^F,\alpha \right) \right] ^{\mathrm{T}}\left[ \left[ Q_{\mathrm{F}_3\left( M \right)}^{F_2}\left( \vec{k}^F,\gamma \right) \right] \left[ Q_{\mathrm{F}_2}^{F_1}\left( \vec{j}^F,\beta \right) \right] \right] ^{\mathrm{T}}\\ \end{cases} \\ \tilde{\vec{\omega}}^F&=\tilde{\vec{\omega}}_{\mathrm{F}_3\left( M \right)}^{F_2}+\widetilde{\left[ Q_{\mathrm{F}_3\left( M \right)}^{F_2}\left( \vec{k}^F,\gamma \right) \right] \tilde{\vec{\omega}}_{\mathrm{F}_2}^{F_1}}+\widetilde{\left[ \left[ Q_{\mathrm{F}_3\left( M \right)}^{F_2}\left( \vec{k}^F,\gamma \right) \right] \left[ Q_{\mathrm{F}_2}^{F_1}\left( \vec{j}^F,\beta \right) \right] \right] \tilde{\vec{\omega}}_{\mathrm{F}_1}^{F}} \\ \Rightarrow \vec{\omega}^F&=\vec{\omega}_{\mathrm{F}_3\left( M \right)}^{F_2}+\left[ Q_{\mathrm{F}_3\left( M \right)}^{F_2}\left( \vec{k}^F,\gamma \right) \right] \vec{\omega}_{\mathrm{F}_2}^{F_1}+\left[ \left[ Q_{\mathrm{F}_3\left( M \right)}^{F_2}\left( \vec{k}^F,\gamma \right) \right] \left[ Q_{\mathrm{F}_2}^{F_1}\left( \vec{j}^F,\beta \right) \right] \right] \vec{\omega}_{\mathrm{F}_1}^{F} \\ \Rightarrow \vec{\omega}^F&=\left[ \begin{array}{c} 0\\ 0\\ \dot{\gamma}\\ \end{array} \right] +\left[ \begin{matrix} \cos \gamma& -\sin \gamma& 0\\ \sin \gamma& \cos \gamma& 0\\ 0& 0& 1\\ \end{matrix} \right] \left[ \begin{array}{c} 0\\ \dot{\beta}\\ 0\\ \end{array} \right] +\left[ \begin{matrix} \cos \gamma& -\sin \gamma& 0\\ \sin \gamma& \cos \gamma& 0\\ 0& 0& 1\\ \end{matrix} \right] \left[ \begin{matrix} \cos \beta& 0& \sin \beta\\ 0& 1& 0\\ -\sin \beta& 0& \cos \beta\\ \end{matrix} \right] \left[ \begin{array}{c} \dot{\alpha}\\ 0\\ 0\\ \end{array} \right] \\ \Rightarrow \vec{\omega}^F&=\left[ \begin{matrix} \cos \beta \cos \gamma& -\sin \gamma& 0\\ \cos \beta \sin \gamma& \cos \gamma& 0\\ -\sin \beta& 0& 1\\ \end{matrix} \right] \left[ \begin{array}{c} \dot{\alpha}\\ \dot{\beta}\\ \dot{\gamma}\\ \end{array} \right] \end{split}
ω~Fω~Fω~F⇒ωF⇒ωF⇒ωF⎩
⎨
⎧[QMF]=[QF3(M)F2(kF,γ)][QF2F1(jF,β)][QF1F(iF,α)]ω~F=[Q˙MF][QMF]T=⎩
⎨
⎧[Q˙F3(M)F2(kF,γ)][QF2F1(jF,β)][QF1F(iF,α)]⋅[QF1F(iF,α)]T[QF2F1(jF,β)]T[QF3(M)F2(kF,γ)]T+[QF3(M)F2(kF,γ)][Q˙F2F1(jF,β)][QF1F(iF,α)]⋅[QF1F(iF,α)]T[QF2F1(jF,β)]T[QF3(M)F2(kF,γ)]T+[QF3(M)F2(kF,γ)][QF2F1(jF,β)][Q˙F1F(iF,α)]⋅[QF1F(iF,α)]T[QF2F1(jF,β)]T[QF3(M)F2(kF,γ)]T=⎩
⎨
⎧[Q˙F3(M)F2(kF,γ)][QF3(M)F2(kF,γ)]T+[QF3(M)F2(kF,γ)][Q˙F2F1(jF,β)][QF2F1(jF,β)]T[QF3(M)F2(kF,γ)]T+[[QF3(M)F2(kF,γ)][QF2F1(jF,β)]][Q˙F1F(iF,α)]⋅[QF1F(iF,α)]T[[QF3(M)F2(kF,γ)][QF2F1(jF,β)]]T=ω~F3(M)F2+[QF3(M)F2(kF,γ)]ω~F2F1
+[[QF3(M)F2(kF,γ)][QF2F1(jF,β)]]ω~F1F
=ωF3(M)F2+[QF3(M)F2(kF,γ)]ωF2F1+[[QF3(M)F2(kF,γ)][QF2F1(jF,β)]]ωF1F=
00γ˙
+
cosγsinγ0−sinγcosγ0001
0β˙0
+
cosγsinγ0−sinγcosγ0001
cosβ0−sinβ010sinβ0cosβ
α˙00
=
cosβcosγcosβsinγ−sinβ−sinγcosγ0001
α˙β˙γ˙
文章来源地址https://www.toymoban.com/news/detail-783815.html
到了这里,关于[足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-4(1) 刚体的速度与角速度的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!