DOA估计算法——Capon算法

这篇具有很好参考价值的文章主要介绍了DOA估计算法——Capon算法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

 1.波速形成基本思想

        在理解Capon算法之前,我们有必要先了解波束形成的基本思想以及原理到底是什么。这有助于我们更好的理解Capon算法的思想。

capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF
图 1 

如图1展示了均匀阵列波束导向的示意图。图中wm表示加权值,波速形成(DBF)的基本思想就是将各阵元输出进行加权求和,在一定时间内将天线阵列“导向”到一个方向上,对期望信号得到最大输出功率的导向位置,同时这个位置也表征了目标或波达方向。

        此外,DBF的基本原理简单来说,就是利用阵元直接相干叠加而获得输出,其缺点在于只有垂直于阵列平面方向的入射波在阵列输出端才能同相叠加,从而形成方向图中主瓣的极大值。反过来说,如果阵列可以围绕它的中心轴旋转,那么当阵列输出最大时,空间波必然由垂直于阵列平面的方向入射而来。但有些天线阵列是很庞大的,且是不能转动的。因此,设法设计一种相控天线法(或称常规波束形成法),这是最早出现的阵列信号处理方法。这种方法中,阵列输出选取一个合适的加权向量以补偿各个阵元的传播延时,从而使在某一期望方向上阵列输出可以同相叠加,进而使阵列在该方向上产生一个主瓣波束,而对其他方向上产生较小的响应,用这种方法对整个空间进行波束扫描就可确定空中待测信号的方位。因此,计算权值wmcapon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF是波束形成这类方法的关键,目前DBF权重主要基于以下准则进行计算:

  • 最大信噪比准则(MSNR):使期望信号分量功率与噪声分量功率之比最大,但是必须知道噪声的统计量和期望信号的波达方向。
  • 最大信干噪比准则(MSINR):使期望信号功率与干扰功率及噪声分量功率之和的比最大。
  • 最小均方误差准则(MMSE):在非雷达应用中,阵列协方差矩阵中通常都含有期望信号,基于此种情况提出的准则。使得阵列输出与某期望响应的均方误差最小,不需要知道期望信号的波达方向。
  • 最大似然比准则(MLH):在对有用信号完全先验未知的情况下,参考信号无法设置,因此,在干扰噪声背景下,首先要取得对有用信号的最大似然估计。
  • 线性约束最小方差准则(LCMV):对有用信号形式和来向完全已知,在某种约束条件下使阵列输出的方差最小。

 2.Capon算法

        Capon算法属于一种在线性约束最小方差准则(LCMV)下的波束形成算法,所谓波束形成即在某些准则约束下,求解阵列输出的最优权。实质上波束形成属于一种空域滤波器。波束形成的“导向”作用是通过调整加权系数完成的,阵列的输出是对各阵元的接收信号量x(n)在 各阵元上的加权和,令权向量为w,则输出可写作为:

capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF

可见对不同的权向量,上式对来自不同方向的信号有不同的响应从而形成不同方向的空间波束。假设空间远场有一个感兴趣的信号d(t) (其波达方向为θd)和J个干扰信号capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF,1,..J((其波达方向为θi),令每个阵元上的加性白噪声为nk(t),它们具有相同的方差capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF。在这些假定的条件下,第k个阵元上的接收信号可以表示为

capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF

等式右边的三项分别表示信号,干扰和噪声。假设有M个阵元如果用矩阵的形式表示式(2),则有

capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF

其中capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF ,分别为M个阵元上接收的数据;capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF

capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF 表示波达方向来自capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF的方向向量。假设接收端得到了N个快拍数据,则根据式(1)可得到波形形成器的输出的平均功率为:

capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF

capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF式(4)可以表示为:

capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF

如上式子所示,输出功率关于波达角的函数通常被称为空间谱。为了保证来自capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF 方向的信号正常接收,同时完全抑制掉其它J个干扰,很容易根据式子(5)得到权向量的约束条件为:

capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF

综上所述,我们可以得出Capon算法所要求解的优化问题可以表述为:

capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF

可以采用拉格朗日乘子法求解。求解过程如下:

令:

capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF

L分别对w和λ求偏导并使各自的偏导数为零,由此可得:

capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF

将式(9)中的第二个式子左乘并将第一个式子代入可得 

capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF

式(10)右乘capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF,可得 

capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF

于是得

capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF

式(12)右乘capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF可得 

capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF

于是得

capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF

将式(14)代入式(12)并取复共轭转置可得:

capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF

将式(15)代入式(5)即可得到Capon的空间谱为:

capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF

根据式(16)进行谱峰搜索,峰值所在的索引表征了目标波达方向(DOA)。

3.Capon算法仿真 

        仿真环境:Matlab2021b;

        波达方向分别为:10°、-15°、21°;

        信源快拍数、阵元个数:1024、32;

        分别对信噪比为:-10dB、20dB、30dB

        仿真代码如下:

%%  Author:Poulen
%%  Data:2023.5.29
%%  Capon算法仿真
clear 
close all;
clc;

%%  产生信号
M=32;                       %阵元单元
c=3e8;                      %光速
f0=77e9;                    %初始频率
lambda=c/f0;                %波长
slope=30e12;                %调频斜率
time=60e-6;                 %60us
d=0:lambda/2:(M-1)*lambda/2;%阵列天线
thita=[-15,21,10];          %波达方向
K = length(thita);
N=1024;                     %信号长度
t=linspace(0,time,N);
A=zeros(M,K);               %导向向量空间 M*K
S=zeros(K,N);               %信号空间

f = 100+f0; 
for i = 1:K
    A(:,i) = exp(-1j*2*pi/lambda*d(:)*sind(thita(i)));
    S(i,:) = exp(1j*2*pi*f*t(:));
    f = 1000+f;
end
S = A*S;                    %产生阵列接收数据

%%  向数据添加白噪声
SNR = 60;                   %单位dB
S = S +(randn(size(S)).*std(S))/db2mag(SNR);

%%  计算信号协方差矩阵
R = (1/N).*S*conj(S).';
R_inv = inv(R);

%%  Capon 算法
scale = -60:0.1:59;         %扫面范围
P_Capon = zeros(length(scale),1);
idx = 1;
for i=scale
    a = exp(-1j*2*pi/lambda*d(:)*sind(i));
    P_Capon(idx) = 1/(conj(a.')*R_inv*a); 
    idx = idx + 1;
end
figure;
plot(scale,db(P_Capon),'LineWidth',1.6,'Color',[0 0 0]);
xlabel('AngleRange(°)');
ylabel('Amplitude(dB)');
title('CaponAlgorithm');
legend(' SNR = 60dB');

仿真效果如下图所示:

capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF

capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF

 

capon算法,DOA估计算法,DOA估计,Capon算法,波速形成DBF

从仿真结果我们不难得出,随着信噪比的增大,Capon估计精度及性能逐渐增强。此外对Capon算法的优缺点做如下总结:

优点:不需要信源数的先验信息,该算法也具有一定的抗干扰性和鲁棒性,能够适用于不同类型和复杂度的信号处理应用。

缺点:需要对协方差矩阵进行求逆,算法的计算和实现较为复杂,需要一定的数字和计算机技术的支持。

4.结束语

        本次分享到此结束,另外创作不易,希望各位毫不吝啬的给博主加加关注,点点赞,非常感谢大家的支持。文章来源地址https://www.toymoban.com/news/detail-783957.html

到了这里,关于DOA估计算法——Capon算法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【精选论文 | Capon算法与MUSIC算法性能的比较与分析】

    本文编辑:调皮哥的小助理 【正文】 首先说结论: 当信噪比(SNR)足够大时,Capon算法和MUSIC算法的空间谱非常相似,因此在SNR比较大时它们的性能几乎一样,当不同信号源的入射角度比较接近时,MUSIC算法的性能优于Capon,这也是MUSIC算法(或者说子空间类算法)被称为高分

    2024年02月11日
    浏览(52)
  • DOA估计算法——迭代自适应算法(IAA)

            迭代自适应法 (Iterative Adaptive Approach,IAA)估计算法最早由美国的电气工程师和数学家Robert Schmidt和Roy A. Kuc在1986年的一篇论文\\\"Multiple Emitter Location and Signal Parameter Estimation\\\"中首次提出了这一算法, IAA DOA 估计算法是一种用于无线通信和雷达系统中估计信号到达方向的

    2024年01月21日
    浏览(23)
  • 稀疏DOA估计的经典算法——l1-SVD算法

    文献\\\"A Sparse Signal Reconstruction Perspective for Source Localization With Sensor Arrays\\\"提出了一种稀疏表示的DOA定位算法,它属于On-Grid类算法的范畴。其核心要点有二:其一是,通过了奇异值(SVD)分解,把以大量快拍数衡量的信号模型,转换成以信源数衡量的低维信号模型;其二是,以二阶

    2024年02月01日
    浏览(36)
  • DoA 估计:多重信号分类 MUSIC 算法(附 MATLAB 代码)

    本文首次在公众号【零妖阁】上发表,为了方便阅读和分享,我们将在其他平台进行自动同步。由于不同平台的排版格式可能存在差异,为了避免影响阅读体验,建议如有排版问题,可前往公众号查看原文。感谢您的阅读和支持! DoA 估计 是指根据天线阵列的接收信号估计出

    2024年02月03日
    浏览(36)
  • 宽带信号处理实现DOA估计(ISM算法、MUSIC、MVDR、CBF)

    功率谱:                              功率谱:                              功率谱:                                    由快拍信号 计算协方差矩阵 ,其中 ,为快拍长度;对上述的空间谱公式遍历各个角度,计算对应角度的导向

    2024年04月23日
    浏览(30)
  • 关于克拉美罗下界(CRLB)-及不同DOA估计算法下的方差(性能)对比

        参数估计 在科研、工程乃至生活中都有广泛的应用。参数估计要解决的问题简单来说就是:基于一组观测数据,通过某种方法来获得我们想要的,与观测数据相关的一个或多个参数。     克拉美-罗界(Cramr-Rao Bound, CRB) 是 无偏估计 里我们常用的且十分重要的 一种对不同

    2024年04月13日
    浏览(59)
  • 一.基于压缩感知(CS)的DOA估计方法-OMP-CS算法

    阅读须知: 1.本文为本人原创作品仅供学习参考,未经过本人同意禁止转载和抄袭。 2.要想无障碍阅读本文需要一定的压缩感知理论以及压缩感知信号重构算法基础。 3.话不多说,直接开搞。         假设有K个远场窄带信号入射到有M个天线的均匀线阵上,第k个信号的入

    2024年02月11日
    浏览(33)
  • 基于确定性最大似然算法 DML 的 DoA 估计,用牛顿法实现(附 MATLAB 源码)

    本文首次在公众号【零妖阁】上发表,为了方便阅读和分享,我们将在其他平台进行自动同步。由于不同平台的排版格式可能存在差异,为了避免影响阅读体验,建议如有排版问题,可前往公众号查看原文。感谢您的阅读和支持! 在 DoA 估计中,最大似然方法主要分为 确定性

    2024年02月17日
    浏览(37)
  • DOA估计 基于互质阵列的DOA估计

            传统阵列的配置方式是均匀线阵,该阵列要求相邻阵元的间距为半波长,易产生耦合效应,影响 DOA 估计精度。而稀疏阵列利用协方差矩阵构建差分共阵方式在虚拟域上生成虚拟阵列,并利用虚拟阵列实现波达方向角的估计。由于虚拟阵列的自由度不在局限于阵列

    2024年02月06日
    浏览(31)
  • 【学习笔记】【DOA子空间算法】4 ESPRIT 算法

      ESPRIT 算法假设阵列传感器成对出现(即有一组平行的传感器),并且每对传感器之间有相同的位移 Δ Delta Δ 。这两组传感器的阵列接收向量分别表示如下: x ( t ) = A s ( t ) + n x ( t ) y ( t ) = A Φ s ( t ) + n y ( t ) begin{equation*} begin{aligned} mathbf{x}(t) = mathbf{A}mathbf{s}(t) + ma

    2024年02月02日
    浏览(32)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包