周末从早到晚讲了一天~ 一不小心搞得田辛老师都断更了。
今天呢,田辛老师来给大家继续讲一个著名的项目管理工具:蒙特卡洛模拟。 当然,田辛老师既然发到CSDN上面,无论如何要给出关于蒙特卡洛模拟的Python实现啦。 下面就是我们今天的代码执行结果。
什么是蒙特卡洛模拟?
蒙特卡洛模拟是一种基于概率统计的方法,通过随机模拟来计算出某个事件发生的概率。在项目管理中,蒙特卡洛模拟主要用于计算项目工期、成本等关键指标的概率分布,帮助项目经理更好地进行风险管理和决策。
让我们来看上面这张图, 这张图是针对三个项目活动:活动1、活动2、活动3进行的蒙特卡洛模拟。 模拟的依据是这三个活动的三点估算结果。 然后让计算机进行了1,000,000次随机预算, 得出的上面这张图。
我们拿上边这张图的蓝色虚线的交叉举例,这个点指的是什么呢? 我们看Y轴,这里的90%指的是完工概率90%。 这个点对应的横轴将近19天的样子。也就是说,通过计算机100万次的模拟。在19天以下完成项目的概率是90%。
做过项目的同学都知道, 客户或者领导总是希望我们快些快些再快些。 领导说,19天没有,只有16天。 这时候,作为项目经理通过上面的图,发现,X轴16天对应Y轴的值大概在30%左右。 你就问领导:成功率只有30%哟, 你赌还是不赌~
这不失为一种不错的“科学算命”的方式。 关键是简单,还有概率论给你撑腰。文章来源:https://www.toymoban.com/news/detail-784301.html
Python实现
在Python中如何计算项目管理的蒙特卡洛模拟呢?其实很简单,我们可以使用Python中的numpy和matplotlib库来进行计算和绘图。下面田老师给出完整的代码:文章来源地址https://www.toymoban.com/news/detail-784301.html
#!/usr/bin/env python
# -*- coding:utf-8 -*-
"""
#-----------------------------------------------------------------------------
# --- TDOUYA STUDIOS ---
#-----------------------------------------------------------------------------
#
# @Project : di08-tdd-cdg-python-learning
# @File : monte_carlo.py
# @Author : tianxin.xp@gmail.com
# @Date : 2023/3/12 18:22
#
# 用Python实现蒙特卡洛模拟
#
#--------------------------------------------------------------------------"""
from datetime import datetime
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import FuncFormatter, MultipleLocator
from scipy.stats import norm
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
def to_percent(y, position):
# 将纵轴用百分数表示
return '{:.0f}%'.format(100 * y)
class Activity:
""" 活动类,用于表示一个项目中的活动
Attributes:
name (str): 活动名称
optimistic (float): 乐观时间
pessimistic (float): 悲观时间
most_likely (float): 最可能时间
"""
def __init__(self, name, optimistic, pessimistic, most_likely):
"""
初始化活动类
Args:
name (str): 活动名称
optimistic (float): 乐观时间
pessimistic (float): 悲观时间
most_likely (float): 最可能时间
"""
self.name = name
self.optimistic = optimistic
self.pessimistic = pessimistic
self.most_likely = most_likely
class PMP:
"""
PMP类用于进行项目管理中的相关计算:
方法:
monte_carlo_simulation : 蒙特卡洛模拟试算,包括计算项目工期、平均值、标准差、绘制积累图和概率密度曲线等功能。
"""
def __init__(self, activities):
"""
初始化PMP类,传入活动列表。
:param activities: 活动列表,包括活动名称、乐观值、最可能值和悲观值。
"""
self.activities = activities
def monte_carlo_simulation(self, n):
"""
进行蒙特卡洛模拟试算,计算项目工期、平均值、标准差、绘制积累图和概率密度曲线等。
:param n: 模拟次数。
"""
# 模拟参数和变量
t = []
for activity in self.activities:
t.append(np.random.triangular(activity.optimistic, activity.most_likely, activity.pessimistic, n))
# 计算项目工期
project_duration = sum(t)
# 计算平均值和标准差
mean_duration = np.mean(project_duration)
std_duration = np.std(project_duration)
# 绘制积累图
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 10), gridspec_kw={'height_ratios': [3, 1]})
ax1.hist(project_duration, bins=50, density=True, alpha=0.7, color='blue', cumulative=True)
ax1.yaxis.set_major_locator(MultipleLocator(0.1))
ax1.yaxis.set_major_formatter(FuncFormatter(to_percent))
ax1.set_ylabel('完成概率')
ax1.set_title('PMP蒙特卡洛模拟试算', fontsize=20)
# 绘制概率密度曲线
xmin, xmax = ax1.get_xlim()
x = np.linspace(xmin, xmax, 100)
p = norm.cdf(x, mean_duration, std_duration)
ax1.plot(x, p, 'k', linewidth=2, drawstyle='steps-post')
# 找到完成概率90%的点
x_90 = norm.ppf(0.9, mean_duration, std_duration)
# 绘制垂线
ax1.axvline(x_90, linestyle='--', color='blue')
ax1.axhline(0.9, linestyle='--', color='blue')
# 隐藏右边和上方的坐标轴线
ax1.spines['right'].set_visible(False)
ax1.spines['top'].set_visible(False)
# 添加表格
col_labels = ['活动名称', '乐观值', '最可能值', '悲观值']
cell_text = [[activity.name, activity.optimistic, activity.most_likely, activity.pessimistic] for activity in
self.activities]
table = ax2.table(cellText=cell_text, colLabels=col_labels, loc='center')
# 设置表格的字体大小和行高
table.auto_set_font_size(False)
table.set_fontsize(14)
# # 设置表格的行高为1.5倍原来的高度
for i in range(len(self.activities) + 1):
table._cells[(i, 0)].set_height(0.2)
table._cells[(i, 1)].set_height(0.2)
table._cells[(i, 2)].set_height(0.2)
table._cells[(i, 3)].set_height(0.2)
ax2.axis('off')
# 调整子图之间的间距和边距
plt.subplots_adjust(hspace=0.3, bottom=0.05)
# 保存图表
now = datetime.now().strftime('%Y%m%d%H%M%S')
plt.savefig('monte_carlo_simulation_{}.png'.format(now))
# 显示图形
plt.show()
if __name__ == '__main__':
# 模拟参数和变量
n = 1000000 # 模拟次数
# 活动的工期分布
activities = [
Activity('活动1', 5, 10, 7),
Activity('活动2', 3, 8, 5),
Activity('活动3', 2, 6, 4)
]
# 进行蒙特卡洛模拟
pmp = PMP(activities)
pmp.monte_carlo_simulation(n)
到了这里,关于【Python】项目管理中蒙特卡洛模拟的Python实现(进度管理的例子)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!