【自动驾驶】模型预测控制(MPC)实现轨迹跟踪

这篇具有很好参考价值的文章主要介绍了【自动驾驶】模型预测控制(MPC)实现轨迹跟踪。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

参考资料

  • bilibili的DR_CAN讲解的MPC模型预测控制器
  • 知乎上一个比较通俗易懂的解释
  • 模型预测控制
  • 轨迹跟踪模型预测控制(MPC)原理与python实现
  • DR_CAN笔记MPC
  • MPC控制笔记

1. 基本概念

  • 模型预测控制(MPC)的核心思想就是以优化方法求解最优控制器,其中优化方法大多时候采用二次规划(Quadratic Programming)。

  • MPC控制器优化得到的控制输出也是系统在未来有限时间步的控制序列。 当然,由于理论构建的模型与系统真实模型都有误差,所以,实际上更远未来的控制输出对系统控制的价值很低,故MPC仅执行输出序列中的第一个控制输出

模型(Model)

分为机理模型基于数据的模型(例如用神经网络训练的一个model)使用基于数据的模型的MPC可以结合model based RL使用。

预测(Predict)

模型就是用来预测的,预测的目的是为了更好的决策

控制(Control)

控制即决策,根据预测来作出决策。

MPC利用一个已有的模型系统当前的状态未来的控制量,来预测系统未来的输出,然后与我们期望的系统输出做比较,得到一个损失函数(代价函数),即:

损失函数 = ( 未来输出 ( 模型,当前状态,未来控制量 ) − 期望输出 ) 2 损失函数 = (未来输出(模型,当前状态,未来控制量)-期望输出)^2 损失函数=(未来输出(模型,当前状态,未来控制量)期望输出)2

由于上式中模型、当前状态、期望输出都是已知的,因此只有未来控制量一个自变量。采用二次规划的方法求解出某个未来控制量,使得损失函数最小,前面提到,这个未来控制量的第一个元素就是当前控制周期的控制量

1.1 MPC vs optimal control

最优控制(optimal control)指的是在一定的约束情况下达到最优状态的系统表现,其中约束情况通常是实际环境所带来的限制,例如汽车中的油门不能无限大等。

最优控制强调的是“最优”,一般最优控制需要在整个时间域上进行求优化(从0时刻到正无穷时刻的积分),这样才能保证最优性,这是一种很贪婪的行为,需要消耗大量算力。同时,系统如果是一个时变系统,或者面临扰动的话,前一时刻得到的最优并不一定是下一时刻的最优值。

J = ∫ 0 ∞ E T Q E + U T R U d t J=\int_{0}^{\infty} E^{T} Q E+U^{T} R U d t J=0ETQE+UTRUdt

最优控制常用解法有: 变分法,极大值原理,动态规划,LQR(LQR可以参考博客)。

MPC仅考虑未来几个时间步,一定程度上牺牲了最优性。

1.2 MPC优点

  • MPC善于处理多输入多输出系统(MIMO);

  • MPC可以处理约束,如安全性约束,上下阈值;

  • MPC是一种向前考虑未来时间步的有限时域优化方法(一定的预测能力)

    最优控制要求在整个时间优化

    实际上MPC采用了一个折中的策略,既不是像最优控制那样考虑整个时域,也不是仅仅考虑当前,而是考虑未来的有限时间域。

2. MPC整体流程

2.1 预测区间与控制区间

对于一般的离散化系统(因为实际计算机实现的控制系统都是离散的系统,连续系统可以进行离散化操作),在k时刻,我们可以测量出系统的当前状态 y ( k ) y(k) y(k),再通过计算得到的 u ( k ) , u ( k + 1 ) , u ( k + 2 ) . . . u ( k + j ) u(k),u(k+1),u(k+2)...u(k+j) u(k),u(k+1),u(k+2)...u(k+j)得到系统未来状态的估计值 y ( k + 1 ) , y ( k + 2 ) . . . y ( k + j ) y(k+1),y(k+2)...y(k+j) y(k+1),y(k+2)...y(k+j)

将预测状态估计的部分称为预测区间(Predictive Horizon),指的是一次优化后预测未来输出的时间步的个数。

将控制估计的部分称为控制区间(Control Horizon),在得到最优输入之后,我们只施加当前时刻的输入u(k),即控制区间的第一位控制输入。

如下图 [ k , k + m ] [k, k+m] [k,k+m]范围为控制区间,之后的红色部分称为 held constant,其中控制区间是要通过优化器来进行优化的参数。

模型预测控制能全轨迹跟踪吗,控制理论,# 决策控制,mpc,自动驾驶,人工智能,轨迹跟踪,模型预测控制

过小的控制区间,可能无法做到较好的控制,而较大的控制区间,比如与预测区间相等,则会导致只有前一部分的控制范围才会有较好的效果,而后一部分的控制范围则收效甚微,而且将带来大量的计算开销。

2.2 约束

对于约束,一般分为Hard约束Soft约束,Hard约束是不可违背必须遵守的,在控制系统中,输入输出都可能会有约束限制,但是在设计时不建议将输入输出都给予Hard约束,因为这两部的约束有可能是有重叠的,导致优化器会产生不可行解。

Hard约束不能违反,Soft约束可以;比如Hard约束是刹车踩的幅度;Soft约束是速度

建议输出采用Soft约束,而输入的话建议输入和输入参数变化率二者之间不要同时为Hard约束,可以一个Hard一个Soft。

2.3 MPC流程

模型预测控制在k时刻共需三步;

  • 第一步:获取系统的当前状态;

  • 第二步:基于 u ( k ) , u ( k + 1 ) , u ( k + 2 ) . . . u ( k + m ) u(k),u(k+1),u(k+2)...u(k+m) u(k),u(k+1),u(k+2)...u(k+m)进行最优化处理;

    离散系统的代价函数可以参考

    J = ∑ k m − 1 E k T Q E k + u k T R u k + E N T F E N J=\sum_{k}^{m-1}E_k^TQE_k+u_k^TRu_k+E_N^TFE_N J=km1EkTQEk+ukTRuk+ENTFEN

    其中 E N E_N EN表示误差的终值,也是衡量优劣的一种标准。

  • 第三步:只取 u ( k ) u(k) u(k)作为控制输入施加在系统上。

在下一时刻重复以上三步,在下一步进行预测时使用的就是下一步的状态值,我们将这样的方案称为滚动优化控制(Receding Horizon Control)。

预测控制的优化不是一次离线进行,而是随着采样时刻的前进反复地在线进行,故称为滚动优化。这种滚动优化虽然得不到理想的全局最优解,但是反复对每一采样时刻的偏差进行优化计算,将可及时地校正控制过程中出现的各种复杂情况。

2.4 MPC vs. LQR

从以下几个方面进行阐述:

  • 研究对象:是否线性化
  • 状态方程:是否离散化
  • 目标函数:误差和控制量的极小值
  • 工作时域:预测时域,控制时域,滚动优化,求解一次
  • 求解方法:QP求解器,变分法求解黎卡提方程
  • LQR和MPC的优缺点:滚动优化,求解时域,实时性,算力,工程常用方法

具体可参考博客

3. MPC设计

当模型是线性的时候(非线性系统可以线性化),MPC的设计求解一般使用二次规划方法。

设线性模型为以下形式:
x k + 1 = A x k + B u k + C (1) x_{k+1}=Ax_k+Bu_k+C \tag{1} xk+1=Axk+Buk+C(1)

假定未来 m m m步的控制输入已知,为 u k , u k + 1 , u k + 2 , . . . , u k + m u_k, u_{k+1}, u_{k+2}, ..., u_{k+m} uk,uk+1,uk+2,...,uk+m​,根据以上模型与输入,我们可以计算未来 m m m步的状态:

x k + 1 = A x k + B u k + C x k + 2 = A x k + 1 + B u k + 1 + C = A ( A x k + B u k + C ) + B u k + 1 + C = A 2 x k + A B u k + B u k + 1 + A C + C x k + 3 = A 3 x k + A 2 B u k + A B k + 1 + B u k + 2 + A 2 C + A C + C . . . x k + m = A m x k + A m − 1 B u k + A m − 2 B u k + 1 + . . . + A m − i B u k + i − 1 + . . . + B u k + m − 1 + A m − 1 C + A m − 2 C + . . . + C \begin{aligned} x_{k+1}&=Ax_k+Bu_k+C \\ x_{k+2}&=Ax_{k+1}+Bu_{k+1}+C=A(Ax_k+Bu_k+C)+Bu_{k+1}+C=A^2x_{k}+ABu_k+Bu_{k+1}+AC+C \\ x_{k+3}&=A^3x_k+A^2Bu_{k}+AB_{k+1}+Bu_{k+2}+A^2C+AC+C\\ ...\\ x_{k+m}&=A^{m}x_{k}+A^{m-1}Bu_k+A^{m-2}Bu_{k+1}+...+A^{m-i}Bu_{k+i-1}+...+Bu_{k+m-1}+A^{m-1}C+A^{m-2}C+...+C \end{aligned} xk+1xk+2xk+3...xk+m=Axk+Buk+C=Axk+1+Buk+1+C=A(Axk+Buk+C)+Buk+1+C=A2xk+ABuk+Buk+1+AC+C=A3xk+A2Buk+ABk+1+Buk+2+A2C+AC+C=Amxk+Am1Buk+Am2Buk+1+...+AmiBuk+i1+...+Buk+m1+Am1C+Am2C+...+C

将上面 m m m步写成矩阵向量形式:

X = A x k + B u + C (2) \mathcal{X}=\mathcal{A}x_k+\mathcal{B}\mathbf{u}+\mathcal{C} \tag{2} X=Axk+Bu+C(2)

其中,
X = [ x k + 1 , x k + 2 , x k + 3 , . . . x k + m ] T \mathcal{X}=\left[x_{k+1}, x_{k+2}, x_{k+3},...x_{k+m}\right]^T X=[xk+1,xk+2,xk+3,...xk+m]T
u = [ u k , u k + 1 , u k + 2 , . . . , u k + m − 1 ] T \mathbf{u}=\left[u_k,u_{k+1},u_{k+2},...,u_{k+m-1}\right]^T u=[uk,uk+1,uk+2,...,uk+m1]T
A = [ A , A 2 , A 3 , . . . , A m ] T \mathcal{A}=\left[A, A^2 ,A^3 ,... ,A^m\right]^T A=[A,A2,A3,...,Am]T

B = ( 0 0 . . . 0 B 0 . . . 0 A B B . . . 0 . . . . . . . . . . . . A m − 1 B A m − 2 B . . . B ) \mathcal{B}=\begin{pmatrix}0&0&...&0\\ B&0&...&0\\ AB&B&...&0\\ ...&...&...&...\\ A^{m-1}B&A^{m-2}B&...&B\end{pmatrix} B= 0BAB...Am1B00B...Am2B...............000...B

C = [ C A C + C A 2 C + A C + C … A k + m − 1 C + … + C ] \mathcal{C}=\left[\begin{array}{c} C \\ A C+C \\ A^{2} C+A C+C \\ \ldots \\ A^{k+m-1} C+\ldots+C \end{array}\right] C= CAC+CA2C+AC+CAk+m1C++C

上式 B \mathcal{B} B中的下三角形式,直接反映了系统在时间上的因果关系,即 k + 1 k+1 k+1时刻的输入对 k k k 时刻的输出没有影响, k + 2 k+2 k+2 时刻的输入对 k k k k + 1 k+1 k+1 时刻没有影响。

假定参考轨迹为 X ‾ = [ x ˉ k + 1 x ˉ k + 2 x ˉ k + 3 … x ˉ k + m ] T \overline{\mathcal{X}}=\left[\begin{array}{lllll}\bar{x}_{k+1} & \bar{x}_{k+2} & \bar{x}_{k+3} & \ldots & \bar{x}_{k+m}\end{array}\right]^{T} X=[xˉk+1xˉk+2xˉk+3xˉk+m]T,则MPC的一个简单的目标代价函数如下:
min ⁡ J = E T Q E + u T R u s.t.  u m i n ≤ u ≤ u m a x (3) \min \mathcal{J}=\mathcal{E}^T Q \mathcal{E}+\mathbf{u}^T R \mathbf{u} \\ \text{s.t. } u_{min}\leq \mathbf{u}\leq u_{max} \tag{3} minJ=ETQE+uTRus.t. uminuumax(3)

其中, E = X − X ‾ = [ x k + 1 − x ˉ k + 1 x k + 2 − x ˉ k + 2 … x k + m − x ˉ k + m ] T \mathcal{E}=\mathcal{X}-\overline{\mathcal{X}}=\left[\begin{array}{llll}x_{k+1}-\bar{x}_{k+1} & x_{k+2}-\bar{x}_{k+2} & \ldots & x_{k+m}-\bar{x}_{k+m}\end{array}\right]^{T} E=XX=[xk+1xˉk+1xk+2xˉk+2xk+mxˉk+m]T

u T R u \mathbf{u}^T R \mathbf{u} uTRu这一项是为了让控制输入不会太大,因此代价函数中添加了一项对控制量的约束。

将式(2)代入式(3),则优化变量仅剩 u \mathbf{u} u。以上最优化问题可用二次规划方法求解,得到满足目标代价函数的最优控制序列 u = { u k , ​​ u k + 1 , ​​ u k + 2 ​​ . . . ​ u k + m − 1 } \mathbf{u}=\left\{u_k,​​u_{k+1},​​u_{k+2}​​...​u_{k+m−1}\right\} u={uk,​​uk+1,​​uk+2​​...​uk+m1}

当转换成式(3)后,可以利用凸优化库进行二次规划求解,例如python的cvxopt,OSQP: An Operator Splitting Solver for Quadratic Programs,Casdi等。

4. MPC应用——无人车轨迹跟踪

4.1 MPC建模

设车辆的状态量偏差和控制量偏差如式 ( 4 ) 所示:
x ~ = [ x ˙ − x ˙ r y ˙ − y ˙ r φ ˙ − φ ˙ r ] , u ~ = [ v − v r δ − δ r ] (4) \tag{4} \tilde{\boldsymbol{x}}=\left[\begin{array}{c} \dot{x}-\dot{x}_{r} \\ \dot{y}-\dot{y}_{r} \\ \dot{\varphi}-\dot{\varphi}_{r} \end{array}\right], \tilde{\boldsymbol{u}}=\left[\begin{array}{c} v-v_{r} \\ \delta-\delta_{r} \end{array}\right] x~= x˙x˙ry˙y˙rφ˙φ˙r ,u~=[vvrδδr](4)
基于先前的运动学模型的离散状态空间方程如下,
x ~ ( k + 1 ) = [ 1 0 − T v r sin ⁡ φ r 0 1 T v r cos ⁡ φ r 0 0 1 ] x ~ ( k ) + [ T cos ⁡ φ r 0 T sin ⁡ φ r 0 T tan ⁡ δ r l T v r l cos ⁡ 2 δ r ] u ~ ( k ) = A x ~ ( k ) + B u ~ ( k ) (5) \tag{5} \tilde{\boldsymbol{x}}(k+1)=\left[\begin{array}{ccc} 1 & 0 & -T v_{r} \sin \varphi_{r} \\ 0 & 1 & T v_{r} \cos \varphi_{r} \\ 0 & 0 & 1 \end{array}\right] \tilde{\boldsymbol{x}}(k)+\left[\begin{array}{cc} T \cos \varphi_{r} & 0 \\ T \sin \varphi_{r} & 0 \\ T \frac{\tan \delta_{r}}{l} & T \frac{v_{r}}{l \cos ^{2} \delta_{r}} \end{array}\right] \tilde{\boldsymbol{u}}(k)=\boldsymbol{A} \tilde{\boldsymbol{x}}(k)+\boldsymbol{B} \tilde{\boldsymbol{u}}(k) x~(k+1)= 100010TvrsinφrTvrcosφr1 x~(k)+ TcosφrTsinφrTltanδr00Tlcos2δrvr u~(k)=Ax~(k)+Bu~(k)(5)

为了表示控制系统达到稳定控制所付出的代价,MPC控制的代价函数定义如下:
min ⁡ J ( U ) = ∑ k = 0 N − 1 ( x ~ ( k ) T Q x ~ ( k ) + u ~ ( k ) T R u ~ ( k ) ) + x ~ ( N ) T Q f x ~ ( N ) (6) \tag{6} \min J(\boldsymbol{U})=\sum_{k=0}^{N-1}\left(\tilde{\boldsymbol{x}}(k)^{T} Q \tilde{\boldsymbol{x}}(k)+\tilde{\boldsymbol{u}}(k)^{T} R \tilde{\boldsymbol{u}}(k)\right)+\tilde{\boldsymbol{x}}(N)^{T} Q_{f} \tilde{\boldsymbol{x}}(N) minJ(U)=k=0N1(x~(k)TQx~(k)+u~(k)TRu~(k))+x~(N)TQfx~(N)(6)
其中函数参数 U = ( u 0 , u 1 , … , u N ) U=\left(u_{0}, u_{1}, \ldots, u_{N}\right) U=(u0,u1,,uN) ,并且矩阵 Q , Q f , R Q, Q_{f}, R Q,Qf,R 为正定矩阵,即
Q = Q T ≥ 0 , Q f = Q f T ≥ 0 , R = R T > 0 Q=Q^{T} \geq 0, \quad Q_{f}=Q_{f}^{T} \geq 0, \quad R=R^{T}>0 Q=QT0,Qf=QfT0,R=RT>0

Q Q_(f) R
给定状态代价矩阵 最终状态代价矩阵 输入代价矩阵
  • N N N : 时间范围(Time Horizon)
  • Q , R Q , R QR : 分别设定状态偏差和输入的相对权重
  • R > 0 R>0 R>0 : 意味着任何非零输入都增加 J J J 的代价
  • x ~ ( k ) T Q x ~ ( k ) \tilde{\boldsymbol{x}}(k)^{T} Q \tilde{\boldsymbol{x}}(k) x~(k)TQx~(k) : 衡量状态偏差
  • u ~ ( k ) T R u ~ ( k ) \tilde{\boldsymbol{u}}(k)^{T} R \tilde{\boldsymbol{u}}(k) u~(k)TRu~(k) : 衡量输入大小
  • x ~ ( N ) T Q f x ~ ( N ) \tilde{\boldsymbol{x}}(N)^{T} Q_{f} \tilde{\boldsymbol{x}}(N) x~(N)TQfx~(N) : 衡量最终状态偏差

对于公式(6),它需要服从的约束条件包括
{ 运动学模型约束—— x ~ ( k + 1 ) = A x ~ ( k ) + B u ~ ( k ) 控制量约束—— ∣ u ~ ( k ) ∣ ≤ u ~ m a x 初始状态—— x ~ ( 0 ) = x ~ 0 (7) \tag{7} \left\{ \begin{aligned} &\text{运动学模型约束——}&\tilde{\boldsymbol{x}}(k+1)=\boldsymbol{A} \tilde{\boldsymbol{x}}(k)+\boldsymbol{B} \tilde{\boldsymbol{u}}(k)\\ &\text{控制量约束——}&\left|\tilde{\boldsymbol{u}}(k)\right| \leq \tilde{\boldsymbol{u}}_{max}\\ &\text{初始状态——}&\tilde{\boldsymbol{x}}(0)=\tilde{\boldsymbol{x}}_0 \end{aligned} \right. 运动学模型约束——控制量约束——初始状态——x~(k+1)=Ax~(k)+Bu~(k)u~(k)u~maxx~(0)=x~0(7)

4.2 python代码实现

完整程序见GitHub仓库

4.2.1 参数

# mpc parameters
NX = 3  # x = x, y, yaw
NU = 2  # u = [v,delta]
T = 8  # horizon length
R = np.diag([0.1, 0.1])  # input cost matrix
Rd = np.diag([0.1, 0.1])  # input difference cost matrix
Q = np.diag([1, 1, 1])  # state cost matrix
Qf = Q  # state final matrix



#车辆
dt=0.1 # 时间间隔,单位:s
L=2 # 车辆轴距,单位:m
v = 2 # 初始速度
x_0=0 # 初始x
y_0=-3 #初始y
psi_0=0 # 初始航向角

MAX_STEER = np.deg2rad(45.0)  # maximum steering angle [rad]
MAX_DSTEER = np.deg2rad(45.0)  # maximum steering speed [rad/s]

MAX_VEL = 2.0  # maximum accel [m/s]

4.2.2 运动学模型

import math


class KinematicModel_3:
  """假设控制量为转向角delta_f和加速度a
  """

  def __init__(self, x, y, psi, v, L, dt):
    self.x = x
    self.y = y
    self.psi = psi
    self.v = v
    self.L = L
    # 实现是离散的模型
    self.dt = dt

  def update_state(self, a, delta_f):
    self.x = self.x+self.v*math.cos(self.psi)*self.dt
    self.y = self.y+self.v*math.sin(self.psi)*self.dt
    self.psi = self.psi+self.v/self.L*math.tan(delta_f)*self.dt
    self.v = self.v+a*self.dt

  def get_state(self):
    return self.x, self.y, self.psi, self.v

    def state_space(self, ref_delta, ref_yaw):
    """将模型离散化后的状态空间表达

    Args:
        ref_delta (_type_): 参考的转角控制量
        ref_yaw (_type_): 参考的偏航角

    Returns:
        _type_: _description_
    """

    A = np.matrix([
        [1.0, 0.0, -self.v*self.dt*math.sin(ref_yaw)],
        [0.0, 1.0, self.v*self.dt*math.cos(ref_yaw)],
        [0.0, 0.0, 1.0]])

    B = np.matrix([
        [self.dt*math.cos(ref_yaw), 0],
        [self.dt*math.sin(ref_yaw), 0],
        [self.dt*math.tan(ref_delta)/self.L, self.v*self.dt /(self.L*math.cos(ref_delta)*math.cos(ref_delta))]
    ])

    C = np.eye(3)
    return A, B, C

4.2.3 参考轨迹

class MyReferencePath:
    def __init__(self):
        # set reference trajectory
        # refer_path包括4维:位置x, 位置y, 轨迹点的切线方向, 曲率k 
        self.refer_path = np.zeros((1000, 4))
        self.refer_path[:,0] = np.linspace(0, 100, 1000) # x
        self.refer_path[:,1] = 2*np.sin(self.refer_path[:,0]/3.0)+2.5*np.cos(self.refer_path[:,0]/2.0) # y
        # 使用差分的方式计算路径点的一阶导和二阶导,从而得到切线方向和曲率
        for i in range(len(self.refer_path)):
            if i == 0:
                dx = self.refer_path[i+1,0] - self.refer_path[i,0]
                dy = self.refer_path[i+1,1] - self.refer_path[i,1]
                ddx = self.refer_path[2,0] + self.refer_path[0,0] - 2*self.refer_path[1,0]
                ddy = self.refer_path[2,1] + self.refer_path[0,1] - 2*self.refer_path[1,1]
            elif i == (len(self.refer_path)-1):
                dx = self.refer_path[i,0] - self.refer_path[i-1,0]
                dy = self.refer_path[i,1] - self.refer_path[i-1,1]
                ddx = self.refer_path[i,0] + self.refer_path[i-2,0] - 2*self.refer_path[i-1,0]
                ddy = self.refer_path[i,1] + self.refer_path[i-2,1] - 2*self.refer_path[i-1,1]
            else:      
                dx = self.refer_path[i+1,0] - self.refer_path[i,0]
                dy = self.refer_path[i+1,1] - self.refer_path[i,1]
                ddx = self.refer_path[i+1,0] + self.refer_path[i-1,0] - 2*self.refer_path[i,0]
                ddy = self.refer_path[i+1,1] + self.refer_path[i-1,1] - 2*self.refer_path[i,1]
            self.refer_path[i,2]=math.atan2(dy,dx) # yaw
            # 计算曲率:设曲线r(t) =(x(t),y(t)),则曲率k=(x'y" - x"y')/((x')^2 + (y')^2)^(3/2).
            # 参考:https://blog.csdn.net/weixin_46627433/article/details/123403726
            self.refer_path[i,3]=(ddy * dx - ddx * dy) / ((dx ** 2 + dy ** 2)**(3 / 2)) # 曲率k计算
            
    def calc_track_error(self, x, y):
        """计算跟踪误差

        Args:
            x (_type_): 当前车辆的位置x
            y (_type_): 当前车辆的位置y

        Returns:
            _type_: _description_
        """
        # 寻找参考轨迹最近目标点
        d_x = [self.refer_path[i,0]-x for i in range(len(self.refer_path))] 
        d_y = [self.refer_path[i,1]-y for i in range(len(self.refer_path))] 
        d = [np.sqrt(d_x[i]**2+d_y[i]**2) for i in range(len(d_x))]
        s = np.argmin(d) # 最近目标点索引


        yaw = self.refer_path[s, 2]
        k = self.refer_path[s, 3]
        angle = normalize_angle(yaw - math.atan2(d_y[s], d_x[s]))
        e = d[s]  # 误差
        if angle < 0:
            e *= -1

        return e, k, yaw, s
        
    def calc_ref_trajectory(self, robot_state, dl=1.0):
        """计算参考轨迹点,统一化变量数组,便于后面MPC优化使用
            参考自https://github.com/AtsushiSakai/PythonRobotics/blob/eb6d1cbe6fc90c7be9210bf153b3a04f177cc138/PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py
        Args:
            robot_state (_type_): 车辆的状态(x,y,yaw,v)
            dl (float, optional): _description_. Defaults to 1.0.

        Returns:
            _type_: _description_
        """
        e, k, ref_yaw, ind = self.calc_track_error(robot_state[0], robot_state[1])

        xref = np.zeros((NX, T + 1))
        dref = np.zeros((NU, T)) # 参考控制量
        ncourse = len(self.refer_path)


        xref[0, 0] = self.refer_path[ind,0]
        xref[1, 0] = self.refer_path[ind, 1]
        xref[2, 0] = self.refer_path[ind, 2]

        # 参考控制量[v,delta]
        ref_delta = math.atan2(L*k, 1)
        dref[0, :] = robot_state[3]
        dref[1, :] = ref_delta

        travel = 0.0

        for i in range(T + 1):
            travel += abs(robot_state[3]) * dt
            dind = int(round(travel / dl))

            if (ind + dind) < ncourse:
                xref[0, i] = self.refer_path[ind + dind,0]
                xref[1, i] = self.refer_path[ind + dind,1]
                xref[2, i] = self.refer_path[ind + dind,2]


            else:
                xref[0, i] = self.refer_path[ncourse - 1,0]
                xref[1, i] = self.refer_path[ncourse - 1,1]
                xref[2, i] = self.refer_path[ncourse - 1,2]


        return xref, ind, dref


4.2.4 矩阵拍平

def get_nparray_from_matrix(x):
    return np.array(x).flatten()

4.2.5 角度归一化到[-pi,pi]

def normalize_angle(angle):
    """
    Normalize an angle to [-pi, pi].

    :param angle: (float)
    :return: (float) Angle in radian in [-pi, pi]
    copied from https://atsushisakai.github.io/PythonRobotics/modules/path_tracking/stanley_control/stanley_control.html
    """
    while angle > np.pi:
        angle -= 2.0 * np.pi

    while angle < -np.pi:
        angle += 2.0 * np.pi

    return angle

4.2.6 MPC控制实现

def linear_mpc_control(xref, x0, delta_ref,ugv):
    """
    linear mpc control

    xref: reference point
    x0: initial state
    delta_ref: reference steer angle
    ugv:车辆对象
    """

    x = cvxpy.Variable((NX, T + 1))
    u = cvxpy.Variable((NU, T)) 

    cost = 0.0  # 代价函数
    constraints = []  # 约束条件

    for t in range(T):
        cost += cvxpy.quad_form(u[:, t]-delta_ref[:,t], R)

        if t != 0:
            cost += cvxpy.quad_form(x[:, t] - xref[:, t], Q)

        A, B, C = ugv.state_space(delta_ref[1,t], xref[2,t])
        constraints += [x[:, t + 1]-xref[:, t+1] == A @ (x[:, t]-xref[:, t]) + B @ (u[:, t]-delta_ref[:,t]) ]


    cost += cvxpy.quad_form(x[:, T] - xref[:, T], Qf)

    constraints += [(x[:, 0]) == x0]
    constraints += [cvxpy.abs(u[0, :]) <= MAX_VEL]
    constraints += [cvxpy.abs(u[1, :]) <= MAX_STEER]

    prob = cvxpy.Problem(cvxpy.Minimize(cost), constraints)
    prob.solve(solver=cvxpy.ECOS, verbose=False)

    if prob.status == cvxpy.OPTIMAL or prob.status == cvxpy.OPTIMAL_INACCURATE:
        opt_x = get_nparray_from_matrix(x.value[0, :])
        opt_y = get_nparray_from_matrix(x.value[1, :])
        opt_yaw = get_nparray_from_matrix(x.value[2, :])
        opt_v = get_nparray_from_matrix(u.value[0, :])
        opt_delta = get_nparray_from_matrix(u.value[1, :])

    else:
        print("Error: Cannot solve mpc..")
        opt_v, opt_delta, opt_x, opt_y, opt_yaw = None, None, None, None, None, 

    return opt_v, opt_delta, opt_x, opt_y, opt_yaw


4.2.7 主函数

from celluloid import Camera # 保存动图时用,pip install celluloid
# 使用随便生成的轨迹
def main():

    reference_path = MyReferencePath()
    goal = reference_path.refer_path[-1,0:2]



    # 运动学模型
    ugv = KinematicModel_3(x_0, y_0, psi_0, v, L, dt)
    x_ = []
    y_ = []
    fig = plt.figure(1)
    # 保存动图用
    camera = Camera(fig)
    # plt.ylim([-3,3])
    for i in range(500):
        robot_state = np.zeros(4)
        robot_state[0] = ugv.x
        robot_state[1] = ugv.y
        robot_state[2]=ugv.psi
        robot_state[3]=ugv.v
        x0 = robot_state[0:3]
        xref, target_ind, dref = reference_path.calc_ref_trajectory(robot_state)
        opt_v, opt_delta, opt_x, opt_y, opt_yaw = linear_mpc_control(xref, x0, dref, ugv)
        ugv.update_state(0, opt_delta[0])  # 加速度设为0,恒速

        x_.append(ugv.x)
        y_.append(ugv.y)

        # 显示动图
        plt.cla()
        plt.plot(reference_path.refer_path[:,0], reference_path.refer_path[:,1], "-.b",  linewidth=1.0, label="course")
        plt.plot(x_, y_, "-r", label="trajectory")
        plt.plot(reference_path.refer_path[target_ind,0], reference_path.refer_path[target_ind,1], "go", label="target")
        # plt.axis("equal")
        plt.grid(True)
        plt.pause(0.001)

        # camera.snap()
        # 判断是否到达最后一个点
        if np.linalg.norm(robot_state[0:2]-goal)<=0.1:
            print("reach goal")
            break
    # animation = camera.animate()
    # animation.save('trajectory.gif')

if __name__=='__main__':
    main()

跟踪效果如下:

模型预测控制能全轨迹跟踪吗,控制理论,# 决策控制,mpc,自动驾驶,人工智能,轨迹跟踪,模型预测控制

(跟踪效果不是很好,我并没有进一步调整,就先这样吧···。)文章来源地址https://www.toymoban.com/news/detail-785066.html

5. MPC开源库/程序

  • do-mpc
  • mpc.pytorch

到了这里,关于【自动驾驶】模型预测控制(MPC)实现轨迹跟踪的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【轨迹跟踪】MPC模型无人机轨迹跟踪【含Matlab源码 3500期】

    1 模型预测控制原理 模型预测控制(MPC)的最核心思想就是利用三维的空间模型加上时间构成四维时空模型,然后在这个时空模型的基础上,求解最优控制器。MPC控制器基于一段时间的时空模型,因此得到的控制输出也是系统在未来有限时间步的控制序列。 由于,理论构建的

    2024年02月02日
    浏览(45)
  • MPC自动驾驶横向控制算法实现 c++

    参考博客: (1)无人车系统(十一):轨迹跟踪模型预测控制(MPC)原理与python实现【40行代码】 (2)【自动驾驶】模型预测控制(MPC)实现轨迹跟踪 (3)自动驾驶——模型预测控制(MPC)理解与实践 (4)MPC算法学习(1) 0 前言 前面介绍的PID、Pure pursuit、Stanley都只是利用当前的

    2024年02月22日
    浏览(47)
  • 自动驾驶路径跟踪控制——驾驶员预瞄模型

        近年来随着智能汽车的发展,出现了很多关于汽车运动的控制算法,包括方向控制算法、速度控制算法以及方向与速度综合控制算法。     虽然这些算法大多不以驾驶员模型命名,但实质上它们无一例外地描述了驾驶员对汽车运动的某种控制行为, 从广义上来

    2024年02月02日
    浏览(48)
  • 模型预测控制(MPC)简介及matlab实现

    全称 :Model-based Predictive Control(MPC)—模型预测控制 本质 :MPC利用一个已有的模型、系统当前的状态和未来的控制量,来预测系统未来的输出,然后与我们期望的系统输出做比较,得到代价函数,通过优化的方法,优化出未来控制量,使得代价函数最小。优化出来的控制量即

    2023年04月08日
    浏览(41)
  • 【模型预测控制MPC】使用离散、连续、线性或非线性模型对预测控制进行建模(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 本文的

    2024年02月14日
    浏览(48)
  • MPC模型预测控制数学推导以及MatLab实现

    研究动机:在一定的 约束条件 下达到 最优的 系统表现。 关于最优的,举个车变道的例子,从表面上来看,轨迹1行车轨迹很平滑,很舒适,没有什么急转弯;轨迹2是快速的,但是假如前面有了障碍物,也需要一种快速的紧急避障能力,所以关于最优的,还得分析特定的情况

    2023年04月08日
    浏览(40)
  • 自动驾驶轨迹预测

    目录 神经网络轨迹预测综述: 比较新的轨迹预测网络 Uber:LaneRCNN[5] Google:VectorNet[6] Huawei:HOME[7] Waymo:TNT[8] Aptive:Covernet[9] NEC:R2P2[10] 商汤:TPNet[11] 美团:StarNet[12]。行人 Aibee:Sophie[13]。行人 MIT:Social lstm[14]。行人 中科大:STGAT[15]。行人 百度:Lane-Attention[16] 【自动驾驶

    2024年02月02日
    浏览(72)
  • 自动驾驶之行人轨迹预测数据集

    ETH: Univ. + Hotel; 750 pedestrians exhibiting complex interactions UCY: Zara01, Zara02 and Uni. 780 pedestrians 单应性矩阵,SLAM中的当用多个不同相机拍摄同一个三维平面需要考虑的矩阵,适应场景为平面情况 商场 这个数据集是用双鸟瞰相机对平面拍摄 将成群行走的人标出,ID和obsmat中一样,每一

    2024年02月11日
    浏览(41)
  • 模型预测控制(MPC)解析(一):模型

    1.1 预测控制的日常应用         模型预测控制的设计目标是计算未来控制变量u的轨迹,以优化未来的系统输出y。优化过程在一个有限的时间窗口进行,并且利用优化时间窗口开始时的系统信息进行优化。为了理解预测控制的基本思想,以一个日常工作为例来进行说明。

    2024年02月02日
    浏览(48)
  • MATLAB 模型预测控制(MPC)控制入门 —— 设计并仿真 MPC 控制器

    MATLAB 模型预测控制(MPC) 模型预测控制工具箱™ 提供了用于开发模型预测控制 (MPC) 的函数、应用程序、Simulink® 模块和参考示例。对于线性问题,该工具箱支持设计隐式、显式、自适应和增益调度 MPC。对于非线性问题,您可以实现单级和多级非线性 MPC。该工具箱提供可部

    2024年02月02日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包