动态规划(分割等和子集)

这篇具有很好参考价值的文章主要介绍了动态规划(分割等和子集)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

416. 分割等和子集

题目难易:中等

给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

注意: 每个数组中的元素不会超过 100 数组的大小不会超过 200

示例 1:

输入: [1, 5, 11, 5]
输出: true
解释: 数组可以分割成 [1, 5, 5] 和 [11].
示例 2:

输入: [1, 2, 3, 5]
输出: false
解释: 数组不能分割成两个元素和相等的子集.
提示:

1 <= nums.length <= 200
1 <= nums[i] <= 100

思路

这道题目初步看,和如下两题几乎是一样的,大家可以用回溯法,解决如下两题

  • 698.划分为k个相等的子集
  • 473.火柴拼正方形

这道题目是要找是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

那么只要找到集合里能够出现 sum / 2 的子集总和,就算是可以分割成两个相同元素和子集了。

本题是可以用回溯暴力搜索出所有答案的,但最后超时了,也不想再优化了,放弃回溯,直接上01背包吧。

如果对01背包不够了解,建议仔细看完如下两篇:

动态规划:关于01背包问题,你该了解这些!(opens new window)
动态规划:关于01背包问题,你该了解这些!(滚动数组)(opens new window)
#01背包问题
背包问题,大家都知道,有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

背包问题有多种背包方式,常见的有:01背包、完全背包、多重背包、分组背包和混合背包等等。

要注意题目描述中商品是不是可以重复放入。

即一个商品如果可以重复多次放入是完全背包,而只能放入一次是01背包,写法还是不一样的。

要明确本题中我们要使用的是01背包,因为元素我们只能用一次。

回归主题:首先,本题要求集合里能否出现总和为 sum / 2 的子集。

那么来一一对应一下本题,看看背包问题如何来解决。

只有确定了如下四点,才能把01背包问题套到本题上来。

背包的体积为sum / 2
背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
背包如果正好装满,说明找到了总和为 sum / 2 的子集。
背包中每一个元素是不可重复放入。
以上分析完,我们就可以套用01背包,来解决这个问题了。

动规五部曲分析如下:

确定dp数组以及下标的含义
01背包中,dp[j] 表示: 容量为j的背包,所背的物品价值最大可以为dp[j]。

本题中每一个元素的数值既是重量,也是价值。

套到本题,dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]。

那么如果背包容量为target, dp[target]就是装满 背包之后的重量,所以 当 dp[target] == target 的时候,背包就装满了。

有录友可能想,那还有装不满的时候?

拿输入数组 [1, 5, 11, 5],举例, dp[7] 只能等于 6,因为 只能放进 1 和 5。

而dp[6] 就可以等于6了,放进1 和 5,那么dp[6] == 6,说明背包装满了。

确定递推公式
01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。

所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);

dp数组如何初始化
在01背包,一维dp如何初始化,已经讲过,

从dp[j]的定义来看,首先dp[0]一定是0。

如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。

这样才能让dp数组在递推的过程中取得最大的价值,而不是被初始值覆盖了。

本题题目中 只包含正整数的非空数组,所以非0下标的元素初始化为0就可以了。

代码如下:

// 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200
// 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了
vector dp(10001, 0);
确定遍历顺序
在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中就已经说明:如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!

代码如下:

// 开始 01背包

for(int i = 0; i < nums.size(); i++) {
    for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历
        dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
    }
}

举例推导dp数组
dp[j]的数值一定是小于等于j的。

如果dp[j] == j 说明,集合中的子集总和正好可以凑成总和j,理解这一点很重要。

用例1,输入[1,5,11,5] 为例,如图:
动态规划(分割等和子集),leetcode,动态规划,算法,leetcode
最后dp[11] == 11,说明可以将这个数组分割成两个子集,使得两个子集的元素和相等。

综上分析完毕,C++代码如下:

class Solution {
public:
    bool canPartition(vector<int>& nums) {
        int sum = 0;

        // dp[i]中的i表示背包内总和
        // 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200
        // 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了
        vector<int> dp(10001, 0);
        for (int i = 0; i < nums.size(); i++) {
            sum += nums[i];
        }
        // 也可以使用库函数一步求和
        // int sum = accumulate(nums.begin(), nums.end(), 0);
        if (sum % 2 == 1) return false;
        int target = sum / 2;

        // 开始 01背包
        for(int i = 0; i < nums.size(); i++) {
            for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历
                dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
            }
        }
        // 集合中的元素正好可以凑成总和target
        if (dp[target] == target) return true;
        return false;
    }
};

python

class Solution:
    def canPartition(self, nums: List[int]) -> bool:
        _sum = 0

        # dp[i]中的i表示背包内总和
        # 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200
        # 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了
        dp = [0] * 10001
        for num in nums:
            _sum += num
        # 也可以使用内置函数一步求和
        # _sum = sum(nums)
        if _sum % 2 == 1:
            return False
        target = _sum // 2

        # 开始 0-1背包
        for num in nums:
            for j in range(target, num - 1, -1):  # 每一个元素一定是不可重复放入,所以从大到小遍历
                dp[j] = max(dp[j], dp[j - num] + num)

        # 集合中的元素正好可以凑成总和target
        if dp[target] == target:
            return True
        return False

(简化版)

class Solution:
    def canPartition(self, nums: List[int]) -> bool:
        if sum(nums) % 2 != 0:
            return False
        target = sum(nums) // 2
        dp = [0] * (target + 1)
        for num in nums:
            for j in range(target, num-1, -1):
                dp[j] = max(dp[j], dp[j-num] + num)
        return dp[-1] == target

二维DP版

class Solution:
    def canPartition(self, nums: List[int]) -> bool:
        
        total_sum = sum(nums)

        if total_sum % 2 != 0:
            return False

        target_sum = total_sum // 2
        dp = [[False] * (target_sum + 1) for _ in range(len(nums) + 1)]

        # 初始化第一行(空子集可以得到和为0)
        for i in range(len(nums) + 1):
            dp[i][0] = True

        for i in range(1, len(nums) + 1):
            for j in range(1, target_sum + 1):
                if j < nums[i - 1]:
                    # 当前数字大于目标和时,无法使用该数字
                    dp[i][j] = dp[i - 1][j]
                else:
                    # 当前数字小于等于目标和时,可以选择使用或不使用该数字
                    dp[i][j] = dp[i - 1][j] or dp[i - 1][j - nums[i - 1]]

        return dp[len(nums)][target_sum]

一维DP版文章来源地址https://www.toymoban.com/news/detail-785254.html

class Solution:
    def canPartition(self, nums: List[int]) -> bool:

        total_sum = sum(nums)

        if total_sum % 2 != 0:
            return False

        target_sum = total_sum // 2
        dp = [False] * (target_sum + 1)
        dp[0] = True

        for num in nums:
            # 从target_sum逆序迭代到num,步长为-1
            for i in range(target_sum, num - 1, -1):
                dp[i] = dp[i] or dp[i - num]
        return dp[target_sum]

到了这里,关于动态规划(分割等和子集)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 动态规划(分割等和子集)

    题目难易:中等 给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。 注意: 每个数组中的元素不会超过 100 数组的大小不会超过 200 示例 1: 输入: [1, 5, 11, 5] 输出: true 解释: 数组可以分割成 [1, 5, 5] 和 [11]. 示例 2: 输入: [1, 2

    2024年02月02日
    浏览(38)
  • 【力扣】416. 分割等和子集 <动态规划、回溯>

    给你一个 只包含正整数的非空数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。 示例 1: 输入:nums = [1,5,11,5] 输出:true 解释:数组可以分割成 [1, 5, 5] 和 [11] 。 示例 2: 输入:nums = [1,2,3,5] 输出:false 解释:数组不能分割成两个元素和

    2024年02月10日
    浏览(38)
  • 力扣hot100:416.分割等和子集(组合/动态规划/STL问题)

    组合数问题 我们思考一下,如果要把数组分割成两个子集,并且两个子集的元素和相等,是否等价于在数组中寻找若干个数使之和等于所有数的一半?是的! 因此我们可以想到,两种方式: ①回溯的方式找到target,但是回溯是阶乘级别的算法,这里会超时。 ②从前往后遍历

    2024年04月28日
    浏览(36)
  • 解决背包衍生题目:单词拆分和分割等和子集--动态规划方式深度呈现

    目录 139. 单词拆分 解题思路 代码实现 416. 分割等和子集 二维动态规划 状态压缩(一维) 问题拓展 背包九讲知识总结 相关问题 题目描述 给你一个字符串  s  和一个字符串列表  wordDict  作为字典。请你判断是否可以利用字典中出现的单词拼接出  s  。 注意: 不要求字典中

    2024年02月03日
    浏览(50)
  • 【算法与数据结构】416、LeetCode分割等和子集

    所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。    思路分析 :本题可以抽象成一个01背包的问题,关于01背包可以看【算法与数据结构】算法与数据结构知识点。 本题只需要求出数组的累积和,然后和的一半就可以视为背包的最大重量,目标

    2024年01月19日
    浏览(41)
  • 【Day42】代码随想录之动态规划0-1背包_416. 分割等和子集

    动态规划理论基础 动规五部曲: 确定dp数组 下标及dp[i] 的含义。 递推公式:比如斐波那契数列 dp[i] = dp[i-1] + dp[i-2]。 初始化dp数组。 确定遍历顺序:从前到后or其他。 推导dp数组。 出现结果不正确: 打印dp日志和自己想的一样:递推公式、初始化或者遍历顺序出错。 打印

    2024年02月20日
    浏览(64)
  • 【十七】【动态规划】DP41 【模板】01背包、416. 分割等和子集、494. 目标和,三道题目深度解析

    动态规划就像是解决问题的一种策略,它可以帮助我们更高效地找到问题的解决方案。这个策略的核心思想就是将问题分解为一系列的小问题,并将每个小问题的解保存起来。这样,当我们需要解决原始问题的时候,我们就可以直接利用已经计算好的小问题的解,而不需要重

    2024年02月03日
    浏览(43)
  • Day42|动态规划part04: 01背包问题,你该了解这些!、滚动数组、416. 分割等和子集

    其他背包,面试几乎不会问,都是竞赛级别的了,leetcode上连多重背包的题目都没有,所以题库也告诉我们,01背包和完全背包就够用了。 而完全背包又是也是01背包稍作变化而来,即:完全背包的物品数量是无限的。 01 背包问题描述 有n件物品和一个最多能背重量为w 的背包

    2024年04月25日
    浏览(37)
  • 力扣:416. 分割等和子集 & 1049. 最后一块石头的重量 II (动态规划)(二合一,一次吃透两道题)

    力扣:416. 分割等和子集 1049. 最后一块石头的重量 II 用的方法都是01背包解法,思路也是近乎一样,这里就放在一起讲解了(主要讲解第一题,第二题大家可以直接自己AC)。01背包解法详细讲解请见上篇博客01背包问题(二) 给你一个 只包含正整数 的 非空 数组 nums 。请你判断

    2024年01月20日
    浏览(49)
  • 第九章 动态规划part04(● 01背包问题,你该了解这些! ● 01背包问题,你该了解这些! 滚动数组 ● 416. 分割等和子集 )

    ● 01背包问题,你该了解这些! ● 01背包问题,你该了解这些! 滚动数组 ● 416. 分割等和子集 https://programmercarl.com/%E8%83%8C%E5%8C%85%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%8001%E8%83%8C%E5%8C%85-1.html 视频讲解:https://www.bilibili.com/video/BV1cg411g7Y6 1.确定dp数组以及下标的含义 i是物品,j是背包容量

    2024年01月16日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包