416. 分割等和子集
题目难易:中等
给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
注意: 每个数组中的元素不会超过 100 数组的大小不会超过 200
示例 1:
输入: [1, 5, 11, 5]
输出: true
解释: 数组可以分割成 [1, 5, 5] 和 [11].
示例 2:
输入: [1, 2, 3, 5]
输出: false
解释: 数组不能分割成两个元素和相等的子集.
提示:
1 <= nums.length <= 200
1 <= nums[i] <= 100
思路
这道题目初步看,和如下两题几乎是一样的,大家可以用回溯法,解决如下两题
- 698.划分为k个相等的子集
- 473.火柴拼正方形
这道题目是要找是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
那么只要找到集合里能够出现 sum / 2 的子集总和,就算是可以分割成两个相同元素和子集了。
本题是可以用回溯暴力搜索出所有答案的,但最后超时了,也不想再优化了,放弃回溯,直接上01背包吧。
如果对01背包不够了解,建议仔细看完如下两篇:
动态规划:关于01背包问题,你该了解这些!(opens new window)
动态规划:关于01背包问题,你该了解这些!(滚动数组)(opens new window)
#01背包问题
背包问题,大家都知道,有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。
背包问题有多种背包方式,常见的有:01背包、完全背包、多重背包、分组背包和混合背包等等。
要注意题目描述中商品是不是可以重复放入。
即一个商品如果可以重复多次放入是完全背包,而只能放入一次是01背包,写法还是不一样的。
要明确本题中我们要使用的是01背包,因为元素我们只能用一次。
回归主题:首先,本题要求集合里能否出现总和为 sum / 2 的子集。
那么来一一对应一下本题,看看背包问题如何来解决。
只有确定了如下四点,才能把01背包问题套到本题上来。
背包的体积为sum / 2
背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
背包如果正好装满,说明找到了总和为 sum / 2 的子集。
背包中每一个元素是不可重复放入。
以上分析完,我们就可以套用01背包,来解决这个问题了。
动规五部曲分析如下:
确定dp数组以及下标的含义
01背包中,dp[j] 表示: 容量为j的背包,所背的物品价值最大可以为dp[j]。
本题中每一个元素的数值既是重量,也是价值。
套到本题,dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]。
那么如果背包容量为target, dp[target]就是装满 背包之后的重量,所以 当 dp[target] == target 的时候,背包就装满了。
有录友可能想,那还有装不满的时候?
拿输入数组 [1, 5, 11, 5],举例, dp[7] 只能等于 6,因为 只能放进 1 和 5。
而dp[6] 就可以等于6了,放进1 和 5,那么dp[6] == 6,说明背包装满了。
确定递推公式
01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。
所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
dp数组如何初始化
在01背包,一维dp如何初始化,已经讲过,
从dp[j]的定义来看,首先dp[0]一定是0。
如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。
这样才能让dp数组在递推的过程中取得最大的价值,而不是被初始值覆盖了。
本题题目中 只包含正整数的非空数组,所以非0下标的元素初始化为0就可以了。
代码如下:
// 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200
// 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了
vector dp(10001, 0);
确定遍历顺序
在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中就已经说明:如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!
代码如下:
// 开始 01背包
for(int i = 0; i < nums.size(); i++) {
for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
}
}
举例推导dp数组
dp[j]的数值一定是小于等于j的。
如果dp[j] == j 说明,集合中的子集总和正好可以凑成总和j,理解这一点很重要。
用例1,输入[1,5,11,5] 为例,如图:
最后dp[11] == 11,说明可以将这个数组分割成两个子集,使得两个子集的元素和相等。
综上分析完毕,C++代码如下:
class Solution {
public:
bool canPartition(vector<int>& nums) {
int sum = 0;
// dp[i]中的i表示背包内总和
// 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200
// 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了
vector<int> dp(10001, 0);
for (int i = 0; i < nums.size(); i++) {
sum += nums[i];
}
// 也可以使用库函数一步求和
// int sum = accumulate(nums.begin(), nums.end(), 0);
if (sum % 2 == 1) return false;
int target = sum / 2;
// 开始 01背包
for(int i = 0; i < nums.size(); i++) {
for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
}
}
// 集合中的元素正好可以凑成总和target
if (dp[target] == target) return true;
return false;
}
};
python
class Solution:
def canPartition(self, nums: List[int]) -> bool:
_sum = 0
# dp[i]中的i表示背包内总和
# 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200
# 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了
dp = [0] * 10001
for num in nums:
_sum += num
# 也可以使用内置函数一步求和
# _sum = sum(nums)
if _sum % 2 == 1:
return False
target = _sum // 2
# 开始 0-1背包
for num in nums:
for j in range(target, num - 1, -1): # 每一个元素一定是不可重复放入,所以从大到小遍历
dp[j] = max(dp[j], dp[j - num] + num)
# 集合中的元素正好可以凑成总和target
if dp[target] == target:
return True
return False
(简化版)
class Solution:
def canPartition(self, nums: List[int]) -> bool:
if sum(nums) % 2 != 0:
return False
target = sum(nums) // 2
dp = [0] * (target + 1)
for num in nums:
for j in range(target, num-1, -1):
dp[j] = max(dp[j], dp[j-num] + num)
return dp[-1] == target
二维DP版文章来源:https://www.toymoban.com/news/detail-785254.html
class Solution:
def canPartition(self, nums: List[int]) -> bool:
total_sum = sum(nums)
if total_sum % 2 != 0:
return False
target_sum = total_sum // 2
dp = [[False] * (target_sum + 1) for _ in range(len(nums) + 1)]
# 初始化第一行(空子集可以得到和为0)
for i in range(len(nums) + 1):
dp[i][0] = True
for i in range(1, len(nums) + 1):
for j in range(1, target_sum + 1):
if j < nums[i - 1]:
# 当前数字大于目标和时,无法使用该数字
dp[i][j] = dp[i - 1][j]
else:
# 当前数字小于等于目标和时,可以选择使用或不使用该数字
dp[i][j] = dp[i - 1][j] or dp[i - 1][j - nums[i - 1]]
return dp[len(nums)][target_sum]
一维DP版文章来源地址https://www.toymoban.com/news/detail-785254.html
class Solution:
def canPartition(self, nums: List[int]) -> bool:
total_sum = sum(nums)
if total_sum % 2 != 0:
return False
target_sum = total_sum // 2
dp = [False] * (target_sum + 1)
dp[0] = True
for num in nums:
# 从target_sum逆序迭代到num,步长为-1
for i in range(target_sum, num - 1, -1):
dp[i] = dp[i] or dp[i - num]
return dp[target_sum]
到了这里,关于动态规划(分割等和子集)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!