【C++】手撕 list类(包含迭代器)

这篇具有很好参考价值的文章主要介绍了【C++】手撕 list类(包含迭代器)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1,list的介绍及使用

2,list_node

3,list_node()

3,list

4,list()

5,push_back(const T& x)

6,print()

7,_list_iterator

8,operator*()

9,begin()

10,end()

11,operator->()

12,operator++()

13,operator++(int)

14,operator--()

15,operator--(int)

16,operator==(const sefl& s)

17,operator!=(const sefl& s)

18,_list_const_iterator

19,list(iterator first, iterator last)

20,begin()const

21,end()const

22,list(const list& lt)

23,operator=(list lt)

24,insert(iterator pos, const T& x)

25,erase(iterator pos)

26,clear()

27,~list()

28,push_front(const T& x)

29,pop_front()

30,pop_back()

31,源代码

32,总结


【C++】手撕 list类(包含迭代器),C++,c++,开发语言,算法,list,数据结构

1,list的介绍及使用

1,list 是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。

2,list 的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。

3,list 与 forward_list 非常相似:最主要的不同在于 forward_list 是单链表,只能朝前迭代,已让其更简单高效。

4,与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。

5,与其他序列式容器相比,list 和 forward_list 最大的缺陷是不支持任意位置的随机访问,比如:要访问 list 的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list 还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这可能是一个重要的因素)

2,list_node

结点的结构体框架

template<class T>
	struct list_node
	{
		list_node<T>* _next;
		list_node<T>* _prev;
		T data;
	};

因为是双向循环链表,需要一个上指针 _prev,下指针 _next,还有数据 data;

3,list_node()

对结点进行初始化

		list_node(const T& x = T())
			:_next(nullptr)
			, _prev(nullptr)
			, data(x)
		{}

然后还要将其初始化,指针为空,数据为内置类型初始化的值;

3,list

链表结构框架

	template <class T>
	class list
	{
		typedef list_node<T> node;
	public:

	private:
		node* _head;
	};

链表是带头结点的,所以我们需要一个哨兵位头结点;

4,list()

对链表初始化

		void empty_init()
		{
			_head = new node;
			_head->_next = _head;
			_head->_prev = _head;
		}

		list()
		{
			empty_init();
		}

因为我们是双向循环链表,所以我们的下一个结点和上一个结点都是指向自己的,形成一个环;

5,push_back(const T& x)

尾插

		void push_back(const T& x)
		{
			node* tail = _head->_prev;
			node* newnode = new node(x);

			tail->_next = newnode;
			newnode->_prev = tail;
			newnode->_next = _head;
			_head->_prev = newnode;
		}

我们先找到尾结点(tail),申请一个新结点,然后就插入其中;

6,print()

打印数据

		void print()
		{
			node* cur = _head->_next;
			while (cur != _head)
			{
				cout << cur->data << " ";
				cur = cur->_next;
			}
		}

哨兵位头结点本身是没有数据的,所以要从下一个结点开始

	void test1()
	{
		wxd::list<int> lt1;
		lt1.push_back(1);
		lt1.push_back(2);
		lt1.push_back(3);
		lt1.push_back(4);

		lt1.print();
	}

【C++】手撕 list类(包含迭代器),C++,c++,开发语言,算法,list,数据结构

也是没有任何问题的

7,_list_iterator

迭代器的框架和初始化


	template<class T,class ref,class ptr>
	struct _list_iterator
	{
		typedef list_node<T> node;
		typedef _list_iterator<T,ref,ptr> sefl;
		node* _node;

		_list_iterator(node* n)
			:_node(n)
		{}
    }

有人会好奇,为什么模板里面有三个参数,现在先不急下面会进行分晓的;

指向结点的迭代器嘛,底层类型就是指针;

初始化也是一样,传来什么就是什么;

8,operator*()

迭代器解引用取值

		ref operator*()
		{
			return _node->data;
		}

ref 其实就是 T&;

9,begin()

找头结点

		iterator begin()
		{
			return iterator(_head->_next);
		}

直接返回构造完后的结果;

10,end()

最后一个结点的下一个位置

		iterator end()
		{
			return iterator(_head);
		}

然后我们就可以试一下迭代器打印了;

	void print_list(const list<int>& lt)
	{
		list<int>::const_iterator it = lt.begin();
		while (it != lt.end())
		{
			cout << *it << " ";
			++it;
		}
		cout << endl;
	}

	void test1()
	{
		wxd::list<int> lt1;
		lt1.push_back(1);
		lt1.push_back(2);
		lt1.push_back(3);
		lt1.push_back(4);

		print_list(lt1);
	}

【C++】手撕 list类(包含迭代器),C++,c++,开发语言,算法,list,数据结构

11,operator->()

迭代器箭头指向取值

		ptr operator->()
		{
			return &_node->data;
		}

返回的是 data 的地址,ptr 是 T* ;

12,operator++()

迭代器前置++

		sefl& operator++()
		{
			_node = _node->_next;
			return *this;
		}

sefl 是  _list_iterator<T,ref,ptr>;

13,operator++(int)

迭代器后置++

		sefl operator++(int)
		{
			sefl tmp(*this);
			_node = _node->_next;
			return tmp;
		}

返回的是之前的值,但其实已经改变了;

14,operator--()

迭代器前置 - -

		sefl& operator--()
		{
			_node = _node->_prev;
			return *this;
		}

15,operator--(int)

迭代器后置 - -

		sefl operator--(int)
		{
			sefl tmp(*this);
			_node = _node->_prev;
			return tmp;
		}

16,operator==(const sefl& s)

迭代器判断相等

		bool  operator==(const sefl& s)
		{
			return _node == s._node;
		}

判断迭代器是否相等比较 _node 就可以了;

17,operator!=(const sefl& s)

判断是否不相等

		bool operator!=(const sefl& s)
		{
			return _node != s._node;
		}

18,_list_const_iterator

然后这个是 const 迭代器版本的,这里我就不一个一个写了;

template<class T>
	struct _list_const_iterator
	{
		typedef list_node<T> node;
		typedef _list_const_iterator<T> sefl;
		node* _node;

		_list_const_iterator(node* n)
			:_node(n)
		{}

		const T& operator*()
		{
			return _node->data;
		}

		sefl& operator++()
		{
			_node = _node->_next;
			return *this;
		}

		sefl operator++(int)
		{
			sefl tmp(*this);
			_node = _node->_next;
			return tmp;
		}

		sefl& operator--()
		{
			_node = _node->_prev;
			return *this;
		}

		sefl operator--(int)
		{
			sefl tmp(*this);
			_node = _node->_prev;
			return tmp;
		}

		bool  operator==(const sefl& s)
		{
			return _node == s._node;
		}

		bool operator!=(const sefl& s)
		{
			return _node != s._node;
		}

	};

其实吧,_list_const_iterator 跟 _list_iterator 就是内部函数参数的返回值不同罢了,我们可以用模板参数来实例化,这样就不用写两个迭代器了;

template <class T>
	class list
	{
		typedef list_node<T> node;
	public:
		typedef _list_iterator<T, T&, T*> iterator;
		typedef _list_iterator<T, const T&, const T*> const_iterator;

list 下面这样操作就可以了,普通迭代器模板一个版本,const 迭代器模板内的参数加上const就可以了,等调用的时候编译器会自动匹配的;

19,list(iterator first, iterator last)

迭代器区间构造

		template<class iterator>
		list(iterator first, iterator last)
		{
			empty_init();
			while (first != last)
			{
				push_back(*first);
				++first;
			}
		}

20,begin()const

const 版本取头结点

		const_iterator begin()const
		{
			return const_iterator(_head->_next);
		}

21,end()const

const 版本取尾结点的下一个位置

		const_iterator end()const
		{
			return const_iterator(_head);
		}

22,list(const list<T>& lt)

拷贝构造

		void swap(list<T>& tmp)
		{
			std::swap(_head, tmp._head);
		}

		list(const list<T>& lt)
		{
			empty_init();
			list<T> tmp(lt.begin(), lt.end());
			swap(tmp);
		}

先把要拷贝的区间信息构造另一个 list ,然后再与 this 指针的 _head哨兵位头结点进行交换即可;

23,operator=(list<T> lt)

赋值

		list<T>& operator=(list<T> lt)
		{
			swap(lt);
			return *this;
		}

24,insert(iterator pos, const T& x)

插入

		void insert(iterator pos, const T& x)
		{
			node* cur = pos._node;
			node* prev = cur->_prev;

			node* newnode = new node(x);
			
			prev->_next = newnode;
			newnode->_prev = prev;
			newnode->_next = cur;
			cur->_prev = newnode;
		}

定义前一个结点,和本身的结点,然后再进行插入即可;

	void test3()
	{
		wxd::list<int> lt1;
		lt1.push_back(1);
		lt1.push_back(2);
		lt1.push_back(3);
		lt1.push_back(4);

		auto pos = find(lt1.begin(), lt1.end(), 3);
		lt1.insert(pos, 9);
		print_list(lt1);
	}

【C++】手撕 list类(包含迭代器),C++,c++,开发语言,算法,list,数据结构

25,erase(iterator pos)

擦除

		iterator erase(iterator pos)
		{
			assert(pos != end());

			node* next = pos._node->_next;
			node* tail = pos._node->_prev;

			tail->_next = next;
			next->_prev = tail;

			delete pos._node;
			return iterator(next);
		}

先断言一下,哨兵位结点是不能擦除的;

然后找到前一个结点,后一个结点,在进行互相绑定;

在释放要删除的空间;

26,clear()

清除

		void clear()
		{
			auto it = begin();
			while (it != end())
			{
				it=erase(it);
			}
		}

27,~list()

析构函数

		~list()
		{
			clear();
			delete _head;
			_head = nullptr;
		}

先清空结点,然后再是否哨兵位头结点置空即可;

28,push_front(const T& x)

头插

		void push_front(const T& x)
		{
			insert(begin(), x);
		}

直接用 insert 插入更加方便;

29,pop_front()

头删

		void pop_front()
		{
			erase(begin());
		}

30,pop_back()

尾删

		void pop_back()
		{
			erase(_head->_prev);
		}

31,源代码

#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
#include<assert.h>
using namespace std;
	template<class T>
	struct list_node
	{
		list_node<T>* _next;
		list_node<T>* _prev;
		T data;

		list_node(const T& x = T())
			:_next(nullptr)
			, _prev(nullptr)
			, data(x)
		{}
	};

	template<class T,class ref,class ptr>
	struct _list_iterator
	{
		typedef list_node<T> node;
		typedef _list_iterator<T,ref,ptr> sefl;
		node* _node;

		_list_iterator(node* n)
			:_node(n)
		{}

		ref operator*()
		{
			return _node->data;
		}

		ptr operator->()
		{
			return &_node->data;
		}

		sefl& operator++()
		{
			_node = _node->_next;
			return *this;
		}

		sefl operator++(int)
		{
			sefl tmp(*this);
			_node = _node->_next;
			return tmp;
		}

		sefl& operator--()
		{
			_node = _node->_prev;
			return *this;
		}

		sefl operator--(int)
		{
			sefl tmp(*this);
			_node = _node->_prev;
			return tmp;
		}

		bool  operator==(const sefl& s)
		{
			return _node == s._node;
		}

		bool operator!=(const sefl& s)
		{
			return _node != s._node;
		}

	};

	template <class T>
	class list
	{
		typedef list_node<T> node;
	public:
		typedef _list_iterator<T, T&, T*> iterator;
		typedef _list_iterator<T, const T&, const T*> const_iterator;

		void empty_init()
		{
			_head = new node;
			_head->_next = _head;
			_head->_prev = _head;
		}

		list()
		{
			empty_init();
		}

		template<class iterator>
		list(iterator first, iterator last)
		{
			empty_init();
			while (first != last)
			{
				push_back(*first);
				++first;
			}
		}

		void push_back(const T& x)
		{
			node* tail = _head->_prev;
			node* newnode = new node(x);

			tail->_next = newnode;
			newnode->_prev = tail;
			newnode->_next = _head;
			_head->_prev = newnode;
		}

		iterator begin()
		{
			return iterator(_head->_next);
		}

		const_iterator begin()const
		{
			return const_iterator(_head->_next);
		}

		iterator end()
		{
			return iterator(_head);
		}

		const_iterator end()const
		{
			return const_iterator(_head);
		}

		void swap(list<T>& tmp)
		{
			std::swap(_head, tmp._head);
		}

		list(const list<T>& lt)
		{
			empty_init();
			list<T> tmp(lt.begin(), lt.end());
			swap(tmp);
		}

		list<T>& operator=(list<T> lt)
		{
			swap(lt);
			return *this;
		}


		void insert(iterator pos, const T& x)
		{
			node* cur = pos._node;
			node* prev = cur->_prev;

			node* newnode = new node(x);
			
			prev->_next = newnode;
			newnode->_prev = prev;
			newnode->_next = cur;
			cur->_prev = newnode;
		}

		iterator erase(iterator pos)
		{
			assert(pos != end());

			node* next = pos._node->_next;
			node* tail = pos._node->_prev;

			tail->_next = next;
			next->_prev = tail;

			delete pos._node;
			return iterator(next);
		}

		~list()
		{
			clear();
			delete _head;
			_head = nullptr;
		}

		void clear()
		{
			auto it = begin();
			while (it != end())
			{
				it=erase(it);
			}
		}

		void push_front(const T& x)
		{
			insert(begin(), x);
		}

		void pop_back()
		{
			erase(_head->_prev);
		}

		void pop_front()
		{
			erase(begin());
		}

		void print()
		{
			node* cur = _head->_next;
			while (cur != _head)
			{
				cout << cur->data << " ";
				cur = cur->_next;
			}
		}


	private:
		node* _head;
	};

32,总结

我们就先搞一个大概的,其中还有很多分支,比如我们写的是擦除某个数据,其实也可以擦除某个范围,这些就靠大家去摸索,查阅文档了;

list 类的实现就到这里了;

加油!

【C++】手撕 list类(包含迭代器),C++,c++,开发语言,算法,list,数据结构文章来源地址https://www.toymoban.com/news/detail-785361.html

到了这里,关于【C++】手撕 list类(包含迭代器)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • C++初阶:适合新手的手撕list(模拟实现list)

    上次讲了常用的接口:今天就来进行模拟实现啦 list.h头文件:包含类的全部(函数的声明与定义) reverseIterator.h文件:进行反向迭代器的实现 test.cpp源文件:进行调用test函数,测试和完善功能 基本结构: ListNode 结构体: 定义了链表的节点结构,包含了三个成员变量:前驱指针

    2024年02月20日
    浏览(50)
  • Java02-迭代器,数据结构,List,Set ,Map,Collections工具类

    目录 什么是遍历? 一、Collection集合的遍历方式 1.迭代器遍历 方法 流程 案例 2. foreach(增强for循环)遍历 案例 3.Lamdba表达式遍历 案例 二、数据结构 数据结构介绍 常见数据结构 栈(Stack) 队列(Queue) 链表(Link) 散列表(Hash Table) 树(Tree) List接口 ArraysList集合 Linked

    2024年02月14日
    浏览(52)
  • 【c++】list迭代器失效问题

    目录 一、list iterator的使用 二、list的迭代器失效         对于list的迭代器的用法,可以将它看做一个指针(实际要更加复杂)来使用,该指针指向list中的一个节点。         【注意】         (1)begin和end为正向迭代器,对迭代器执行++操作,迭代器向后移动         (2)r

    2024年01月23日
    浏览(40)
  • Java02-迭代器,数据结构,List,Set ,TreeSet集合,Collections工具类

    目录 什么是遍历? 一、Collection集合的遍历方式 1.迭代器遍历 方法 流程 案例 2. foreach(增强for循环)遍历 案例 3.Lamdba表达式遍历 案例 二、数据结构 数据结构介绍 常见数据结构 栈(Stack) 队列(Queue) 链表(Link) 散列表(Hash Table) 树(Tree) List接口 ArraysList集合 Linked

    2024年02月14日
    浏览(47)
  • 初识Go语言25-数据结构与算法【堆、Trie树、用go中的list与map实现LRU算法、用go语言中的map和堆实现超时缓存】

      堆是一棵二叉树。大根堆即任意节点的值都大于等于其子节点。反之为小根堆。   用数组来表示堆,下标为 i 的结点的父结点下标为(i-1)/2,其左右子结点分别为 (2i + 1)、(2i + 2)。 构建堆   每当有元素调整下来时,要对以它为父节点的三角形区域进行调整。 插入元素

    2024年02月12日
    浏览(59)
  • 【C++进阶(四)】STL大法--list深度剖析&list迭代器问题探讨

    💓博主CSDN主页:杭电码农-NEO💓   ⏩专栏分类:C++从入门到精通⏪   🚚代码仓库:NEO的学习日记🚚   🌹关注我🫵带你学习C++   🔝🔝 本质重点: 本章重点讲解list的接口函数的熟悉 并且讲解list迭代器失效的特性 最后讲解迭代器的功能分类以及 算法库函数中谁能用谁不能

    2024年02月09日
    浏览(39)
  • 数据结构与算法之手撕排序算法

    为什么要学习排序算法? 根据统计,早起大型机CPU资源的四分之一都花在了数据排序上面。排序算法作为最基础的算法,各种操作系统、编程语言都提供了内置的实现。既然排序实现随处可见,我们为什么还要自己动手实现呢?虽然经典算法要动手写写加深印象的道理都懂,

    2023年04月16日
    浏览(51)
  • 包含了父子关系的单位对象的List数据转成树状结构

    你知道的越多,你不知道的越多 点赞再看,养成习惯 如果您有疑问或者见解,或者没有积分想获取项目和定制项目,欢迎指教: 企鹅:869192208 需求 将一个包含了父子关系的单位对象的 List 数据,转成一个带层级关系的数据。 原始数据,用 json 格式展示 实现代码: 最终返

    2024年02月12日
    浏览(47)
  • 数据结构之队列详解(C语言手撕)

    🎉个人名片: 🐼作者简介:一名乐于分享在学习道路上收获的大二在校生 🙈个人主页🎉:GOTXX 🐼个人WeChat:ILXOXVJE 🐼本文由GOTXX原创,首发CSDN🎉🎉🎉 🐵系列专栏:零基础学习C语言----- 数据结构的学习之路----C++的学习之路 🐓每日一句:如果没有特别幸运,那就请特

    2024年03月10日
    浏览(66)
  • C++:模拟实现list及迭代器类模板优化方法

    本篇模拟实现简单的list和一些其他注意的点 如下所示是利用拷贝构造将一个链表中的数据挪动到另外一个链表中,构造两个相同的链表 lt作为形参,传引用可以提高传参的效率,同时应该加上const修饰来保证不会因为不小心修改了形参导致外部的实参也被修改,这样的结果是

    2024年02月13日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包