深度学习与计算机视觉:从CNN到Transformer

这篇具有很好参考价值的文章主要介绍了深度学习与计算机视觉:从CNN到Transformer。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.背景介绍

计算机视觉是人工智能领域的一个重要分支,它涉及到计算机自动识别和理解人类视觉中的图像和视频。深度学习是计算机视觉的核心技术之一,它借鉴了人类的思维和学习过程,通过神经网络模拟人类大脑中的神经元活动,实现了对图像和视频的自动处理和理解。

深度学习的发展历程可以分为以下几个阶段:

  1. 2006年,Hinton等人提出了深度学习的概念,并开始研究深度神经网络。
  2. 2012年,Alex Krizhevsky等人使用深度卷积神经网络(CNN)赢得了ImageNet大赛,从而引发了深度学习的广泛关注。
  3. 2014年,Karpathy等人开发了LSTM(长短期记忆网络),为自然语言处理(NLP)和计算机视觉提供了新的方法。
  4. 2017年,Vaswani等人提出了Transformer架构,它的出现为NLP和计算机视觉等领域带来了革命性的变革。

本文将从CNN到Transformer的发展历程入手,详细介绍深度学习与计算机视觉的核心概念、算法原理、具体操作步骤以及数学模型公式。同时,我们还将讨论深度学习在计算机视觉领域的未来发展趋势与挑战。

2.核心概念与联系

2.1 深度学习

深度学习是一种基于神经网络的机器学习方法,它可以自动学习表示和特征,从而实现对复杂数据的处理和理解。深度学习的核心思想是通过多层次的神经网络,模拟人类大脑中的神经元活动,实现对输入数据的自动处理和理解。

深度学习的主要组成部分包括:文章来源地址https://www.toymoban.com/news/detail-785405.html

  1. 神经网络:是深度学习的基本结构,由多个节点(神经元ÿ

到了这里,关于深度学习与计算机视觉:从CNN到Transformer的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【深度学习: 计算机视觉】如何改进计算机视觉数据集

    机器学习算法需要大量数据集来训练、提高性能并生成组织所需的结果。 数据集是计算机视觉应用程序和模型运行的燃料。数据越多越好。这些数据应该是高质量的,以确保人工智能项目获得最佳的结果和产出。 获取训练机器学习模型所需数据的最佳方法之一是使用开源数

    2024年02月20日
    浏览(48)
  • 从计算机视觉(Computer Vision)的角度出发,从传统机器学习的特征工程、分类器设计和优化,到深度学习的CNN架构设计、训练优化、模型压缩与推理部署,详细阐述了图像识别领域最新的技术发展方向

    作者:禅与计算机程序设计艺术 在现代信息技术的快速发展过程中,图像识别技术越来越重要。早期的人工智能算法主要侧重于特征提取、分类或回归任务。近几年,随着神经网络(Neural Networks)在图像识别领域的不断突破,很多研究人员将目光投向了深度学习(Deep Learni

    2024年02月10日
    浏览(47)
  • 深度学习与计算机视觉

    目录 1 深度学习 1.1 人工智能 1.2 机器学习 1.3 深度学习 1.3.1 深度学习发展历程 1.3.2 深度学习中的核心因素 1.3.3 深度学习模型分类 1.3.4 深度学习框架 2 计算机视觉 人工智能、机器学习、深度学习这三者的关系: 在实现人工智能的众多算法中,机器学习是发展较为快速的

    2024年02月06日
    浏览(48)
  • 计算机竞赛 基于CNN实现谣言检测 - python 深度学习 机器学习

    🔥 优质竞赛项目系列,今天要分享的是 基于CNN实现谣言检测 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 社交媒体的发展在加速信息传播的同时,也带来了虚假谣言信息的泛滥,往往会引发诸多不

    2024年02月12日
    浏览(61)
  • 计算机视觉(五)深度学习基础

    深度学习与神经网络的区别 选择合适的目标函数 Softmax层 梯度消失的直观解释 激活函数 学习步长 SGD的问题 存在马鞍面,使我们的训练卡住,于是提出下面方法: Momentum动量 Nesterov Momentum 先利用“惯性”,“走”一步。避免一开始,就被当前梯度带偏。 Adagrad 为不同的参数

    2024年02月14日
    浏览(56)
  • 深度学习|10.1 深度学习在计算机视觉的应用

    图像中的每一个像素点都是输入层的一部分。而最终最后只有一个输出点,也就是说需要通过乘上中间层/隐藏层内部的矩阵,从而实现降维。 直观上,信息越多,分析的效果应该越好,但也意味着分析的量会越来越大,考虑到分析所需要的时间和空间,往往采用卷积的方式

    2024年02月03日
    浏览(50)
  • 计算机竞赛 深度学习猫狗分类 - python opencv cnn

    🔥 优质竞赛项目系列,今天要分享的是 🚩 **基于深度学习猫狗分类 ** 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:3分 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/p

    2024年02月07日
    浏览(65)
  • 深度学习与计算机视觉的创新

    深度学习和计算机视觉是现代人工智能领域的两个重要分支。深度学习是一种通过多层神经网络来处理大规模数据的机器学习方法,而计算机视觉则是利用计算机程序来模仿人类视觉系统对图像进行分析和理解的技术。在过去的几年里,深度学习与计算机视觉的融合已经取得

    2024年04月09日
    浏览(52)
  • 计算机视觉(三)未有深度学习之前

    把图像划分成若干互不相交的区域。 经典的数字图像分割算法一般是基于灰度值的两个基本特征之一:不连续性和相似性。 基于阈值:基于图像灰度特征计算一个或多个灰度阈值。将灰度值与阈值比较,最后将比较结果分到合适的类别中。 大津法 基于边缘:边界线上连续的

    2024年02月15日
    浏览(54)
  • 【探索AI】三十一-计算机视觉(六)深度学习在计算机视觉中的应用

    深度学习在计算机视觉中的应用已经取得了显著的成果,并且正在逐步改变我们对图像和视频信息的处理和理解方式。下面将详细讲解深度学习在计算机视觉中的几个关键应用。 首先,我们来看图像分类。图像分类是计算机视觉的基本任务之一,它涉及到将输入的图像自动归

    2024年04月09日
    浏览(70)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包