Opencv实战——图像拼接

这篇具有很好参考价值的文章主要介绍了Opencv实战——图像拼接。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


前言

  图像拼接(Image Stitching)是一种利用实景图像组成全景空间的技术,它将多幅图像拼接成一幅大尺度图像或360度全景图,接可以看做是场景重建的一种特殊情况,其中图像仅通过平面单应性进行关联。图像拼接在运动检测和跟踪,增强现实,分辨率增强,视频压缩和图像稳定等机器视觉领域有很大的应用。
  图像拼接的输出是两个输入图像的并集。通常用到四个步骤:
特征提取(Feature Extraction):检测输入图像中的特征点。

图像配准(Image Registration):建立了图像之间的几何对应关系,使它们可以在一个共同的参照系中进行变换、比较和分析。

图像变形(Warping):图像变形是指将其中一幅图像的图像重投影,并将图像放置在更大的画布上。

图像融合(Blending):图像融合是通过改变边界附近的图像灰度级,去除这些缝隙,创建混合图像,从而在图像之间实现平滑过渡。混合模式(Blend modes)用于将两层融合到一起。

实现方法

1、用SIFT提取图像中的特征点,并对每个关键点周围的区域计算特征向量。可以使用比SIFT快的SURF方法,但是我的opencv版本为最新版,不知道是专利的原因还是什么原因用SURF = cv2.xfeatures2D.SURF_create ()实例化的时候会报错,网上说可以退opencv版本,但是我这里没有尝试,就用了sift = cv2.SIFT_create()。
2、在分别提取好了两张图片的关键点和特征向量以后,可以利用它们进行两张图片的匹配。在拼接图片中,可以使用Knn进行匹配,但是使用FLANN快速匹配库更快,图片拼接,需要用到FLANN的单应性匹配。
3、单应性匹配完之后可以获得透视变换H矩阵,用这个的逆矩阵来对第二幅图片进行透视变换,将其转到和第一张图一样的视角,为下一步拼接做准备。
4、透视变化完后就可以直接拼接图片了,将图片通过numpy直接加到透视变化完成的图像的左边,覆盖掉重合的部分,得到拼接图片,但是这样拼接得图片中间会有一条很明显的缝隙,可以通过加权平均法,界线的两侧各取一定的比例来融合缝隙,速度快,但不自然。或者羽化法,或者拉普拉斯金字塔融合,效果最好。在这里用的是加权平均法,可以把第一张图叠在左边,但是对第一张图和它的重叠区做一些加权处理,重叠部分,离左边图近的,左边图的权重就高一些,离右边近的,右边旋转图的权重就高一些,然后两者相加,使得过渡是平滑地,这样看上去效果好一些,速度就比较慢。

实现代码

先给出原图
opencv图像拼接,Opencv学习笔记,opencv,计算机视觉,人工智能
opencv图像拼接,Opencv学习笔记,opencv,计算机视觉,人工智能

直接拼接

#导入库
import cv2
import numpy as np
import sys
from PIL import Image
#图像显示函数
def show(name,img):
    cv2.imshow(name, img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
#读取输入图片
ima = cv2.imread("you.jpg")
imb = cv2.imread("zuo.jpg")
A = ima.copy()
B = imb.copy()
imageA = cv2.resize(A,(0,0),fx=0.2,fy=0.2)
imageB = cv2.resize(B,(0,0),fx=0.2,fy=0.2)
#检测A、B图片的SIFT关键特征点,并计算特征描述子
def detectAndDescribe(image):
    # 建立SIFT生成器
    sift = cv2.SIFT_create()
    # 检测SIFT特征点,并计算描述子
    (kps, features) = sift.detectAndCompute(image, None)
    # 将结果转换成NumPy数组
    kps = np.float32([kp.pt for kp in kps])
    # 返回特征点集,及对应的描述特征
    return (kps, features)

#检测A、B图片的SIFT关键特征点,并计算特征描述子
kpsA, featuresA = detectAndDescribe(imageA)
kpsB, featuresB = detectAndDescribe(imageB)
# 建立暴力匹配器
bf = cv2.BFMatcher()
# 使用KNN检测来自A、B图的SIFT特征匹配对,K=2
matches = bf.knnMatch(featuresA, featuresB, 2)
good = []
for m in matches:
    # 当最近距离跟次近距离的比值小于ratio值时,保留此匹配对
    if len(m) == 2 and m[0].distance < m[1].distance * 0.75:
        # 存储两个点在featuresA, featuresB中的索引值
        good.append((m[0].trainIdx, m[0].queryIdx))

# 当筛选后的匹配对大于4时,计算视角变换矩阵
if len(good) > 4:
    # 获取匹配对的点坐标
    ptsA = np.float32([kpsA[i] for (_, i) in good])
    ptsB = np.float32([kpsB[i] for (i, _) in good])
    # 计算视角变换矩阵
    H, status = cv2.findHomography(ptsA, ptsB, cv2.RANSAC,4.0)

# 匹配两张图片的所有特征点,返回匹配结果
M = (matches, H, status)
# 如果返回结果为空,没有匹配成功的特征点,退出程序
if M is None:
    print("无匹配结果")
    sys.exit()
# 否则,提取匹配结果
# H是3x3视角变换矩阵
(matches, H, status) = M
# 将图片A进行视角变换,result是变换后图片
result = cv2.warpPerspective(imageA, H, (imageA.shape[1] + imageB.shape[1], imageA.shape[0]))
# 将图片B传入result图片最左端
result[0:imageB.shape[0], 0:imageB.shape[1]] = imageB
show('res',result)
print(result.shape)

效果:
opencv图像拼接,Opencv学习笔记,opencv,计算机视觉,人工智能
  可以发现直接拼接虽然可以拼接但是在拼接的地方会有一条很明显的缝隙,不过直接拼接的速度比较快只用了2点多秒。

加权处理

  我们通常使用alpha因子,通常称为alpha通道,它在中心像素处的值为1,在与边界像素线性递减后变为0。当输出拼接图像中至少有两幅重叠图像时,我们将使用如下的alpha值来计算其中一个像素处的颜色:假设两个图像,在输出图像中重叠;每个像素点在图像,其中(R,G,B)是像素的颜色值,我们将在缝合后的输出图像中计算(x, y)的像素值:
代码如下:

import cv2
import numpy as np
from matplotlib import pyplot as plt
import time
def show(name,img):
    cv2.imshow(name, img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
MIN = 10
FLANN_INDEX_KDTREE = 0
starttime = time.time()
img1 = cv2.imread('zuo.jpg') #query
img2 = cv2.imread('you.jpg') #train
imageA = cv2.resize(img1,(0,0),fx=0.2,fy=0.2)
imageB = cv2.resize(img2,(0,0),fx=0.2,fy=0.2)
surf=cv2.xfeatures2d.SIFT_create()#可以改为SIFT
#sift = cv2.SIFT_create()
kp1,descrip1 = sift.detectAndCompute(imageA,None)
kp2,descrip2 = sift.detectAndCompute(imageB,None)
#创建字典
indexParams = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
searchParams = dict(checks=50)
flann=cv2.FlannBasedMatcher(indexParams,searchParams)
match=flann.knnMatch(descrip1,descrip2,k=2)
good=[]
#过滤特征点
for i,(m,n) in enumerate(match):
    if(m.distance<0.75*n.distance):
        good.append(m)

# 当筛选后的匹配对大于10时,计算视角变换矩阵
if len(good) > MIN:
    src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1,1,2)
    ano_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1,1,2)
    M,mask = cv2.findHomography(src_pts,ano_pts,cv2.RANSAC,5.0)
    warpImg = cv2.warpPerspective(imageB, np.linalg.inv(M), (imageA.shape[1]+imageB.shape[1], imageB.shape[0]))
    direct=warpImg.copy()
    direct[0:imageA.shape[0], 0:imageB.shape[1]] =imageA
    simple=time.time()

show('res',warpImg)
rows,cols=imageA.shape[:2]
print(rows)
print(cols)
for col in range(0,cols):
    # 开始重叠的最左端
    if imageA[:, col].any() and warpImg[:, col].any():
        left = col
        print(left)
        break

for col in range(cols-1, 0, -1):
    #重叠的最右一列
    if imageA[:, col].any() and warpImg[:, col].any():
        right = col
        print(right)
        break
#加权处理
res = np.zeros([rows, cols, 3], np.uint8)
for row in range(0, rows):
    for col in range(0, cols):
        if not imageA[row, col].any():  # 如果没有原图,用旋转的填充
            res[row, col] = warpImg[row, col]
        elif not warpImg[row, col].any():
            res[row, col] = imageA[row, col]
        else:
            srcImgLen = float(abs(col - left))
            testImgLen = float(abs(col - right))
            alpha = srcImgLen / (srcImgLen + testImgLen)
            res[row, col] = np.clip(imageA[row, col] * (1 - alpha) + warpImg[row, col] * alpha, 0, 255)

warpImg[0:imageA.shape[0], 0:imageA.shape[1]]=res
show('res',warpImg)
final=time.time()
print(final-starttime)

效果:
opencv图像拼接,Opencv学习笔记,opencv,计算机视觉,人工智能
  可以发现经过加权处理融合后的图片要比直接拼接效果要好,但是时间用了差不多16秒,而且还是有一条黑缝,目前还没有找到解决的办法,有好方法的友友们可以在评论区留意哟。


总结

  除了加权处理的方法外,还可以尝试用羽化和拉普拉斯金字塔等方法来实现图像拼接,这里给出实现的原理,方便以后尝试。
羽化(原文连接):
 加载原始图像并找到轮廓。

 模糊原始图像并将其保存在不同的变量中。

 创建一个空的蒙版并在其上绘制检测到的轮廓。

 使用 np.where() 方法从要模糊值的蒙版(轮廓)中选择像素,然后替换它。

拉普拉斯金字塔(原文连接);文章来源地址https://www.toymoban.com/news/detail-785460.html

到了这里,关于Opencv实战——图像拼接的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深度学习图像风格迁移 - opencv python 计算机竞赛

    🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习图像风格迁移 - opencv python 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https://gitee.com/danche

    2024年02月04日
    浏览(58)
  • 计算机竞赛 opencv python 深度学习垃圾图像分类系统

    🔥 优质竞赛项目系列,今天要分享的是 🚩 opencv python 深度学习垃圾分类系统 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 这是一个较为新颖的竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/p

    2024年02月13日
    浏览(80)
  • 计算机竞赛 基于深度学习的人脸性别年龄识别 - 图像识别 opencv

    🔥 优质竞赛项目系列,今天要分享的是 🚩 毕业设计 人脸性别年龄识别系统 - 图像识别 opencv 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:3分 🧿 更多资料, 项目分享: https

    2024年02月10日
    浏览(101)
  • 计算机竞赛 深度学习 opencv python 公式识别(图像识别 机器视觉)

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习的数学公式识别算法实现 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:4分 创新点:4分 🧿 更多资料, 项目分享: https://gitee.com/d

    2024年02月07日
    浏览(59)
  • 基于深度学习的人脸性别年龄识别 - 图像识别 opencv 计算机竞赛

    🔥 优质竞赛项目系列,今天要分享的是 🚩 毕业设计 人脸性别年龄识别系统 - 图像识别 opencv 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:3分 🧿 更多资料, 项目分享: https

    2024年02月06日
    浏览(72)
  • 计算机竞赛 深度学习+opencv+python实现昆虫识别 -图像识别 昆虫识别

    🔥 优质竞赛项目系列,今天要分享的是 🚩 **基于深度学习的昆虫识别算法研究与实现 ** 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:4分 创新点:4分 🧿 更多资料, 项目分享: https://git

    2024年02月07日
    浏览(92)
  • 深度学习卫星遥感图像检测与识别 -opencv python 目标检测 计算机竞赛

    🔥 优质竞赛项目系列,今天要分享的是 🚩 **深度学习卫星遥感图像检测与识别 ** 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:5分 🧿 更多资料, 项目分享: https://gitee.com/da

    2024年02月03日
    浏览(71)
  • 计算机视觉项目实战-基于特征点匹配的图像拼接

    😊😊😊 欢迎来到本博客 😊😊😊 本次博客内容将继续讲解关于OpenCV的相关知识 🎉 作者简介 : ⭐️⭐️⭐️ 目前计算机研究生在读。主要研究方向是人工智能和群智能算法方向。目前熟悉深度学习(keras、pytorch、yolo),python网页爬虫、机器学习、计算机视觉(OpenCV)、

    2024年02月02日
    浏览(50)
  • 计算机设计大赛 深度学习YOLO图像视频足球和人体检测 - python opencv

    🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习YOLO图像视频足球和人体检测 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:5分 🧿 更多资料, 项目分享: https://gitee.com/dan

    2024年02月20日
    浏览(123)
  • 计算机设计大赛 深度学习卫星遥感图像检测与识别 -opencv python 目标检测

    🔥 优质竞赛项目系列,今天要分享的是 🚩 **深度学习卫星遥感图像检测与识别 ** 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:5分 🧿 更多资料, 项目分享: https://gitee.com/da

    2024年02月22日
    浏览(80)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包