开发篇1:使用原生api和Langchain调用大模型

这篇具有很好参考价值的文章主要介绍了开发篇1:使用原生api和Langchain调用大模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

对大模型的调用通常有以下几种方式:方式一、大模型厂商都会定义http风格的请求接口,在代码中可以直接发起http请求调用;方式二、在开发环境中使用大模型厂商提供的api;方式三、使用开发框架Langchain调用,这个就像java对数据库的调用一样,可以直接用jdbc也可以使用第三方框架,第三方框架调用会封装一些共性问题,比如参数配置,多数据库统一调用方式,连接处理,缓存处理等等,使用第三方框架调用往往会大幅提高开发效率。下面逐一说明几种调用方式
方式一: post请求调用,以openai(chatgpt)为例,demo如下,举例代码语言为python,http调用各种语言都有这个能力,个人建议还是python来做大模型相关开发,pandas对数据集合处理已经比较成熟,内存运算性能也很高,下面的例子中requests为python的requests的模块
response = requests.post(
"https://api.openai.com/v1/chat/completions",
headers=headers,
json=json_data,
)
其中head封装了在openai上注册的key
headers = {
"Content-Type": "application/json",
"Authorization": "Bearer " + openai.api_key,
}
json是一个python的字典,封装了模型名称和messages(prompt请求)
json_data = {"model": model, "messages": messages}
方式二:python使用使用大模型厂商提供的api(openai为例),首先要在开发环境中pip安装tiktoken和openai模块,openai有两个接口,1个是对话模型,1个语言模型,调用方式分别如下
pip install tiktoken openai
#调用Completion api,openai会以json返回回答
data = openai.Completion.create(
model="text-davinci-003",
prompt="牛肉面故乡在哪里",
max_tokens=1000,
temperature=0
)
#调用 chat Completion api,chat Completion api是GPT3.5开始使用的问答模型,可以使用这个模型实现一问一答
messages=[
{
"role": "user",
"content": "你好"
}
]
data = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages = messages
)
方式三:用使用langchain调用,使用langchain自带的OpenAI类,
from langchain.llms import OpenAI
 
llm = OpenAI(model_name="text-davinci-003")
llm("牛肉面起源于哪个城市")
Langchain有model,Data Connection,chains,Memory,Agents,Callbacks,每个模块的使用会在下一篇说明,OpenAI类属于model模块,如下图所示,Model 模块的主要职责1个是提示词的生成,1个是解决对大模型的调用的封装,这个有点像java里面Springboot template对jdbc的封装,封装后统一了对各类模型的调用
 
开发篇1:使用原生api和Langchain调用大模型

 文章来源地址https://www.toymoban.com/news/detail-786129.html

 
 
 

到了这里,关于开发篇1:使用原生api和Langchain调用大模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python调用讯飞星火大模型v3 api接口使用教程

            这里我们可以获取星火免费赠送的200万个token使用和测试,获取方法如下:         打卡网站讯飞星火认知大模型-AI大语言模型-星火大模型-科大讯飞 ,登录用户点击免费使用                 点击购买首次应该会让创建一个应用, 如下图,按要求内容随意填写

    2024年02月05日
    浏览(44)
  • 自然语言处理从入门到应用——LangChain:模型(Models)-[大型语言模型(LLMs):缓存LLM的调用结果]

    分类目录:《大模型从入门到应用》总目录 LangChain系列文章: 基础知识 快速入门 安装与环境配置 链(Chains)、代理(Agent:)和记忆(Memory) 快速开发聊天模型 模型(Models) 基础知识 大型语言模型(LLMs) 基础知识 LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(

    2024年02月16日
    浏览(50)
  • 如何申请文心一言&文心千帆大模型API调用资格、获取access_token,并使用SpringBoot接入文心一言API

    前段时间,百度文心一言文心千帆大模型开放了API调用的测试,接下来,教大家申请测试资格并接入文心千帆大模型的API。 右上角点击注册,内容如实填写并完成实名认证。  注册与认证详细内容不再赘述。 进入文心一言文心千帆大模型介绍页,点击申请体验 会进入填写问

    2024年02月15日
    浏览(45)
  • 开发者如何使用讯飞星火认知大模型API?

    目录 1、申请星火API接口 2、使用星火API接口 3、测试编译效果 之前我们使用网页文本输入的方式体验了讯飞星火认知大模型的功能(是什么让科大讯飞1个月股价翻倍?),本篇博文将从开发者角度来看看如何使用讯飞星火认知大模型API。 体验网址:https://xinghuo.xfyun.cn/?ch=s

    2024年02月13日
    浏览(51)
  • 大语言模型的开发利器langchain

    最近随着chatgpt的兴起,人工智能和大语言模型又再次进入了人们的视野,不同的是这一次像是来真的,各大公司都在拼命投入,希望能在未来的AI赛道上占有一席之地。因为AI需要大规模的算力,尤其是对于大语言模型来说。大规模的算力就意味着需要大量金钱的投入。那么

    2024年02月11日
    浏览(60)
  • 开源大模型框架llama.cpp使用C++ api开发入门

    llama.cpp是一个C++编写的轻量级开源类AIGC大模型框架,可以支持在消费级普通设备上本地部署运行大模型,以及作为依赖库集成的到应用程序中提供类GPT的功能。 以下基于llama.cpp的源码利用C++ api来开发实例demo演示加载本地模型文件并提供GPT文本生成。 CMakeLists.txt main.cpp 注:

    2024年02月03日
    浏览(52)
  • 【AI大模型应用开发】【LangChain系列】5. 实战LangChain的智能体Agents模块

    大家好,我是【同学小张】。持续学习,持续干货输出,关注我,跟我一起学AI大模型技能。 在我前面的MetaGPT系列文章中,已经对智能体有了一个认知,重温一下: 智能体 = LLM+观察+思考+行动+记忆 将大语言模型作为一个推理引擎。给定一个任务,智能体自动生成完成任务所

    2024年03月09日
    浏览(59)
  • LangChain大型语言模型(LLM)应用开发(五):评估

    LangChain是一个基于大语言模型(如ChatGPT)用于构建端到端语言模型应用的 Python 框架。它提供了一套工具、组件和接口,可简化创建由大型语言模型 (LLM) 和聊天模型提供支持的应用程序的过程。LangChain 可以轻松管理与语言模型的交互,将多个组件链接在一起,以便在不同的

    2024年02月15日
    浏览(45)
  • LangChain大型语言模型(LLM)应用开发(三):Chains

    LangChain是一个基于大语言模型(如ChatGPT)用于构建端到端语言模型应用的 Python 框架。它提供了一套工具、组件和接口,可简化创建由大型语言模型 (LLM) 和聊天模型提供支持的应用程序的过程。LangChain 可以轻松管理与语言模型的交互,将多个组件链接在一起,以便在不同的

    2024年02月12日
    浏览(44)
  • LangChain大型语言模型(LLM)应用开发(六):Agents

    LangChain是一个基于大语言模型(如ChatGPT)用于构建端到端语言模型应用的 Python 框架。它提供了一套工具、组件和接口,可简化创建由大型语言模型 (LLM) 和聊天模型提供支持的应用程序的过程。LangChain 可以轻松管理与语言模型的交互,将多个组件链接在一起,以便在不同的

    2024年02月16日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包