Spark避坑系列二(Spark Core-RDD编程)

这篇具有很好参考价值的文章主要介绍了Spark避坑系列二(Spark Core-RDD编程)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

大家想了解更多大数据相关内容请移驾我的课堂:
大数据相关课程

剖析及实践企业级大数据
数据架构规划设计
大厂架构师知识梳理:剖析及实践数据建模


PySpark避坑系列第二篇,该篇章主要介绍spark的编程核心RDD,RDD的概念,基础操作

一、什么是RDD

1.1 概念

RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,代表一个不可变、可分区、里面的元素可并行计算的集合。

所有的运算以及操作都建立在 RDD 数据结构的基础之上。

可以认为RDD是分布式的列表List或数组Array,抽象的数据结构

1.2 为什么需要RDD

分布式计算需要:

• 分区控制
• Shuffle控制
• 数据存储\序列化\发送
• 数据计算API
• 等一系列功能

这些功能, 不能简单的通过Python内置的本地集合对象(如文章来源地址https://www.toymoban.com/news/detail-786387.html

到了这里,关于Spark避坑系列二(Spark Core-RDD编程)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Spark【RDD编程(三)键值对RDD】

            键值对 RDD 就是每个RDD的元素都是 (key,value)类型的键值对,是一种常见的 RDD,可以应用于很多场景。                 因为毕竟通过我们之前Hadoop的学习中,我们就可以看到对数据的处理,基本都是以键值对的形式进行统一批处理的,因为MapReduce模型中

    2024年02月09日
    浏览(49)
  • spark DStream从不同数据源采集数据(RDD 队列、文件、diy 采集器、kafka)(scala 编程)

    目录 1. RDD队列 2 textFileStream 3 DIY采集器 4 kafka数据源【重点】        a、使用场景:测试        b、实现方式: 通过ssc.queueStream(queueOfRDDs)创建DStream,每一个推送这个队列的RDD,都会作为一个DStream处理     1. 自定义采集器     2. 什么情况下需要自定采集器呢?          比

    2024年02月07日
    浏览(49)
  • Spark【RDD编程(四)综合案例】

    输入数据:   处理代码: 代码解析:  运行结果: 要求:输入三个文件(每行一个数字),要求输出一个文件,文件内文本格式为(序号 数值)。         我们会发现,如果我们不调用 foreach 这个行动操作而是直接在转换操作中进行输出的话,这样是输出不来结果的,

    2024年02月09日
    浏览(38)
  • Spark RDD编程基本操作

    RDD是Spark的核心概念,它是一个只读的、可分区的分布式数据集,这个数据集的全部或部分可以缓存在内存中,可在多次计算间重用。Spark用Scala语言实现了RDD的API,程序员可以通过调用API实现对RDD的各种操作,从而实现各种复杂的应用。 Spark采用textFile()方法来从文件系统中加

    2024年02月06日
    浏览(82)
  • Spark综合大作业:RDD编程初级实践

    Spark综合大作业:RDD编程初级实践 实验配置:操作系统:Ubuntu16.04 | 环境:Spark版本:2.4.0 | 软件:Python版本:3.4.3。 (1)熟悉Spark的RDD基本操作及键值对操作; (2)熟悉使用RDD编程解决实际具体问题的方法。 本次大作业的实验是操作系统:Ubuntu16.04,Spark版本:2.4.0,Python版

    2023年04月26日
    浏览(44)
  • 【Spark编程基础】实验三RDD 编程初级实践(附源代码)

    1、熟悉 Spark 的 RDD 基本操作及键值对操作; 2、熟悉使用 RDD 编程解决实际具体问题的方法 1、Scala 版本为 2.11.8。 2、操作系统:linux(推荐使用Ubuntu16.04)。 3、Jdk版本:1.7或以上版本。 请到本教程官网的“下载专区”的“数据集”中下载 chapter5-data1.txt,该数据集包含了某大

    2024年03月25日
    浏览(56)
  • Spark避坑系列一(基础知识)

    大家想了解更多大数据相关内容请移驾我的课堂: 大数据相关课程 剖析及实践企业级大数据 数据架构规划设计 大厂架构师知识梳理:剖析及实践数据建模 剖析及实践数据资产运营平台 Spark作为大数据领域离线计算的王者,在分布式数据处理计算领域有着极高的处理效率,

    2024年02月02日
    浏览(48)
  • Spark大数据处理讲课笔记---Spark RDD典型案例

    利用RDD计算总分与平均分 利用RDD统计每日新增用户 利用RDD实现分组排行榜 针对成绩表,计算每个学生总分和平均分   读取成绩文件,生成lines;定义二元组成绩列表;遍历lines,填充二元组成绩列表;基于二元组成绩列表创建RDD;对rdd按键归约得到rdd1,计算总分;将rdd1映射

    2024年02月06日
    浏览(48)
  • Spark【Spark SQL(二)RDD转换DataFrame、Spark SQL读写数据库 】

    Saprk 提供了两种方法来实现从 RDD 转换得到 DataFrame: 利用反射机制推断 RDD 模式 使用编程方式定义 RDD 模式 下面使用到的数据 people.txt :         在利用反射机制推断 RDD 模式的过程时,需要先定义一个 case 类,因为只有 case 类才能被 Spark 隐式地转换为DataFrame对象。 注意

    2024年02月09日
    浏览(51)
  • Spark大数据分析与实战笔记(第三章 Spark RDD 弹性分布式数据集-02)

    人生很长,不必慌张。你未长大,我要担当。 传统的MapReduce虽然具有自动容错、平衡负载和可拓展性的优点,但是其最大缺点是采用非循环式的数据流模型,使得在迭代计算式要进行大量的磁盘IO操作。Spark中的RDD可以很好的解决这一缺点。 RDD是Spark提供的最重要的抽象概念

    2024年02月22日
    浏览(83)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包