Sharding-JDBC(六)5.1.0版本,实现按月分表、自动建表、自动刷新节点

这篇具有很好参考价值的文章主要介绍了Sharding-JDBC(六)5.1.0版本,实现按月分表、自动建表、自动刷新节点。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

shardingjdbc自动创建表,# ShardingJDBC,java,数据库,spring

  • 官网地址: https://shardingsphere.apache.org/
  • GitHub: https://github.com/apache/shardingsphere
  • 官方示例:https://github.com/apache/shardingsphere/tree/master/examples
  • 中文社区: https://community.sphere-ex.com/
  • 5.1.0 官方文档: https://shardingsphere.apache.org/document/5.1.0/cn/overview/

背景: 项目用户数据库表量太大,对数据按月分表,需要满足如下需求:

  1. 将数据库按月分表;
  2. 自动建表;
  3. 数据自动跨表查询。

ShardingJDBC 4 升到 5 过后还是解决了许多问题,4版本的分页、跨库和子查询问题都解决来了,性能也提高了。

1.Maven 依赖

<!-- Sharding-JDBC -->
<dependency>
    <groupId>org.apache.shardingsphere</groupId>
    <artifactId>shardingsphere-jdbc-core-spring-boot-starter</artifactId>
    <version>5.1.0</version>
</dependency>
<!-- ShardingJDBC 5.1.0使用druid连接池需要加dbcp依赖 -->
<dependency>
    <groupId>org.apache.tomcat</groupId>
    <artifactId>tomcat-dbcp</artifactId>
    <version>10.0.16</version>
</dependency>

<!-- MyBatis-Plus -->
<dependency>
    <groupId>com.baomidou</groupId>
    <artifactId>mybatis-plus-boot-starter</artifactId>
    <version>${mybatisplus.version}</version>
</dependency>
<!-- Mybatis的分页插件 -->
<dependency>
    <groupId>com.github.pagehelper</groupId>
    <artifactId>pagehelper-spring-boot-starter</artifactId>
    <version>1.3.0</version>
</dependency>

2.创建表结构

-- ------------------------------
-- 用户表
-- ------------------------------
CREATE TABLE `t_user` (
  `id` bigint(16) NOT NULL COMMENT '主键',
  `username` varchar(64) NOT NULL COMMENT '用户名',
  `password` varchar(64) NOT NULL COMMENT '密码',
  `age` int(8) NOT NULL COMMENT '年龄',
  `create_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  `update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='用户表';

-- ------------------------------
-- 用户表202201
-- ------------------------------
CREATE TABLE `t_user_202201` (
  `id` bigint(16) NOT NULL COMMENT '主键',
  `username` varchar(64) NOT NULL COMMENT '用户名',
  `password` varchar(64) NOT NULL COMMENT '密码',
  `age` int(8) NOT NULL COMMENT '年龄',
  `create_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  `update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='用户表202201';

3.yml 配置

server:
  port: 8081

spring:
  ### 处理连接池冲突 #####
  main:
    allow-bean-definition-overriding: true
  shardingsphere:
    # 是否启用 Sharding
    enabled: true
    # 打印sql
#    props:
#      sql-show: true
    datasource:
      names: mydb
      mydb:
        type: com.alibaba.druid.pool.DruidDataSource
        url: jdbc:mysql://localhost:3306/mydb?useUnicode=true&characterEncoding=UTF-8&serverTimezone=Asia/Shanghai
        driver-class-name: com.mysql.cj.jdbc.Driver
        username: root
        password: root
        # 数据源其他配置
        initialSize: 5
        minIdle: 5
        maxActive: 20
        maxWait: 60000
        timeBetweenEvictionRunsMillis: 60000
        minEvictableIdleTimeMillis: 300000
        validationQuery: SELECT 1 FROM DUAL
        testWhileIdle: true
        testOnBorrow: false
        testOnReturn: false
        poolPreparedStatements: true
        # 配置监控统计拦截的filters,去掉后监控界面sql无法统计,'wall'用于防火墙
        #filters: stat,wall,log4j
        maxPoolPreparedStatementPerConnectionSize: 20
        useGlobalDataSourceStat: true
        connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=500
    rules:
      sharding:
        # 表策略配置
        tables:
          # t_user 是逻辑表
          t_user:
            # 配置数据节点,这里是按月分表
            # 示例1:时间范围设置在202201 ~ 210012
            # actualDataNodes: mydb.t_user_$->{2022..2100}0$->{1..9},mydb.t_user_$->{2022..2100}1$->{0..2}
            # 示例2:时间范围设置在202201 ~ 202203
            actualDataNodes: mydb.t_user
            tableStrategy:
              # 使用标准分片策略
              standard:
                # 配置分片字段
                shardingColumn: create_time
                # 分片算法名称,不支持大写字母和下划线,否则启动就会报错
                shardingAlgorithmName: time-sharding-algorithm
        # 分片算法配置
        shardingAlgorithms:
          # 分片算法名称,不支持大写字母和下划线,否则启动就会报错
          time-sharding-algorithm:
            # 类型:自定义策略
            type: CLASS_BASED
            props:
              # 分片策略
              strategy: standard
              # 分片算法类
              algorithmClassName: com.demo.module.config.sharding.TimeShardingAlgorithm

# mybatis-plus
mybatis-plus:
  mapper-locations: classpath*:/mapper/*Mapper.xml
  # 实体扫描,多个package用逗号或者分号分隔
  typeAliasesPackage: cn.demo.project.*.entity
  # 测试环境打印sql
  configuration:
    log-impl: org.apache.ibatis.logging.stdout.StdOutImpl

pagehelper:
  helperDialect: postgresql

4.TimeShardingAlgorithm.java 分片算法类

import com.demo.module.config.sharding.enums.ShardingTableCacheEnum;
import com.google.common.collect.Range;
import lombok.extern.slf4j.Slf4j;
import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue;
import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue;
import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm;

import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
import java.util.*;
import java.util.function.Function;

/**
 * <p> @Title TimeShardingAlgorithm
 * <p> @Description 分片算法,按月分片
 *
 * @author ACGkaka
 * @date 2022/12/20 11:33
 */
@Slf4j
public class TimeShardingAlgorithm implements StandardShardingAlgorithm<LocalDateTime> {

    /**
     * 分片时间格式
     */
    private static final DateTimeFormatter TABLE_SHARD_TIME_FORMATTER = DateTimeFormatter.ofPattern("yyyyMM");

    /**
     * 完整时间格式
     */
    private static final DateTimeFormatter DATE_TIME_FORMATTER = DateTimeFormatter.ofPattern("yyyyMMdd HH:mm:ss");

    /**
     * 表分片符号,例:t_contract_202201 中,分片符号为 "_"
     */
    private final String TABLE_SPLIT_SYMBOL = "_";


    /**
     * 精准分片
     * @param tableNames 对应分片库中所有分片表的集合
     * @param preciseShardingValue 分片键值,其中 logicTableName 为逻辑表,columnName 分片键,value 为从 SQL 中解析出来的分片键的值
     * @return 表名
     */
    @Override
    public String doSharding(Collection<String> tableNames, PreciseShardingValue<LocalDateTime> preciseShardingValue) {
        String logicTableName = preciseShardingValue.getLogicTableName();
        ShardingTableCacheEnum logicTable = ShardingTableCacheEnum.of(logicTableName);
        if (logicTable == null) {
            log.error(">>>>>>>>>> 【ERROR】数据表类型错误,请稍后重试,logicTableNames:{},logicTableName:{}",
                    ShardingTableCacheEnum.logicTableNames(), logicTableName);
            throw new IllegalArgumentException("数据表类型错误,请稍后重试");
        }

        /// 打印分片信息
        log.info(">>>>>>>>>> 【INFO】精确分片,节点配置表名:{},数据库缓存表名:{}", tableNames, logicTable.resultTableNamesCache());

        LocalDateTime dateTime = preciseShardingValue.getValue();
        String resultTableName = logicTableName + "_" + dateTime.format(TABLE_SHARD_TIME_FORMATTER);
        // 检查分表获取的表名是否存在,不存在则自动建表
        if (!tableNames.contains(resultTableName)){
            tableNames.add(resultTableName);
        }
        return ShardingAlgorithmTool.getShardingTableAndCreate(logicTable, resultTableName);
    }

    /**
     * 范围分片
     * @param tableNames 对应分片库中所有分片表的集合
     * @param rangeShardingValue 分片范围
     * @return 表名集合
     */
    @Override
    public Collection<String> doSharding(Collection<String> tableNames, RangeShardingValue<LocalDateTime> rangeShardingValue) {
        String logicTableName = rangeShardingValue.getLogicTableName();
        ShardingTableCacheEnum logicTable = ShardingTableCacheEnum.of(logicTableName);
        if (logicTable == null) {
            log.error(">>>>>>>>>> 【ERROR】逻辑表范围异常,请稍后重试,logicTableNames:{},logicTableName:{}",
                    ShardingTableCacheEnum.logicTableNames(), logicTableName);
            throw new IllegalArgumentException("逻辑表范围异常,请稍后重试");
        }

        /// 打印分片信息
        log.info(">>>>>>>>>> 【INFO】范围分片,节点配置表名:{},数据库缓存表名:{}", tableNames, logicTable.resultTableNamesCache());

        // between and 的起始值
        Range<LocalDateTime> valueRange = rangeShardingValue.getValueRange();
        boolean hasLowerBound = valueRange.hasLowerBound();
        boolean hasUpperBound = valueRange.hasUpperBound();

        // 获取最大值和最小值
        Set<String> tableNameCache = logicTable.resultTableNamesCache();
        LocalDateTime min = hasLowerBound ? valueRange.lowerEndpoint() :getLowerEndpoint(tableNameCache);
        LocalDateTime max = hasUpperBound ? valueRange.upperEndpoint() :getUpperEndpoint(tableNameCache);

        // 循环计算分表范围
        Set<String> resultTableNames = new LinkedHashSet<>();
        while (min.isBefore(max) || min.equals(max)) {
            String tableName = logicTableName + TABLE_SPLIT_SYMBOL + min.format(TABLE_SHARD_TIME_FORMATTER);
            resultTableNames.add(tableName);
            min = min.plusMinutes(1);
        }
        return ShardingAlgorithmTool.getShardingTablesAndCreate(logicTable, resultTableNames);
    }

    @Override
    public void init() {

    }

    @Override
    public String getType() {
        return null;
    }

    // --------------------------------------------------------------------------------------------------------------
    // 私有方法
    // --------------------------------------------------------------------------------------------------------------

    /**
     * 获取 最小分片值
     * @param tableNames 表名集合
     * @return 最小分片值
     */
    private LocalDateTime getLowerEndpoint(Collection<String> tableNames) {
        Optional<LocalDateTime> optional = tableNames.stream()
                .map(o -> LocalDateTime.parse(o.replace(TABLE_SPLIT_SYMBOL, "") + "01 00:00:00", DATE_TIME_FORMATTER))
                .min(Comparator.comparing(Function.identity()));
        if (optional.isPresent()) {
            return optional.get();
        } else {
            log.error(">>>>>>>>>> 【ERROR】获取数据最小分表失败,请稍后重试,tableName:{}", tableNames);
            throw new IllegalArgumentException("获取数据最小分表失败,请稍后重试");
        }
    }

    /**
     * 获取 最大分片值
     * @param tableNames 表名集合
     * @return 最大分片值
     */
    private LocalDateTime getUpperEndpoint(Collection<String> tableNames) {
        Optional<LocalDateTime> optional = tableNames.stream()
                .map(o -> LocalDateTime.parse(o.replace(TABLE_SPLIT_SYMBOL, "") + "01 00:00:00", DATE_TIME_FORMATTER))
                .max(Comparator.comparing(Function.identity()));
        if (optional.isPresent()) {
            return optional.get();
        } else {
            log.error(">>>>>>>>>> 【ERROR】获取数据最大分表失败,请稍后重试,tableName:{}", tableNames);
            throw new IllegalArgumentException("获取数据最大分表失败,请稍后重试");
        }
    }
}

5.ShardingAlgorithmTool.java 分片工具类

import com.alibaba.druid.util.StringUtils;
import com.demo.module.config.sharding.enums.ShardingTableCacheEnum;
import com.demo.module.utils.SpringUtil;
import lombok.extern.slf4j.Slf4j;
import org.apache.shardingsphere.driver.jdbc.core.datasource.ShardingSphereDataSource;
import org.apache.shardingsphere.infra.config.RuleConfiguration;
import org.apache.shardingsphere.mode.manager.ContextManager;
import org.apache.shardingsphere.sharding.algorithm.config.AlgorithmProvidedShardingRuleConfiguration;
import org.apache.shardingsphere.sharding.api.config.rule.ShardingTableRuleConfiguration;
import org.apache.shardingsphere.sharding.rule.TableRule;
import org.springframework.core.env.Environment;

import javax.sql.DataSource;
import java.lang.reflect.Field;
import java.lang.reflect.Modifier;
import java.sql.*;
import java.time.YearMonth;
import java.time.format.DateTimeFormatter;
import java.util.*;
import java.util.stream.Collectors;

/**
 * <p> @Title ShardingAlgorithmTool
 * <p> @Description 按月分片算法工具
 *
 * @author ACGkaka
 * @date 2022/12/20 14:03
 */
@Slf4j
public class ShardingAlgorithmTool {

    /** 表分片符号,例:t_user_202201 中,分片符号为 "_" */
    private static final String TABLE_SPLIT_SYMBOL = "_";

    /** 数据库配置 */
    private static final Environment ENV = SpringUtil.getApplicationContext().getEnvironment();
    private static final String DATASOURCE_URL = ENV.getProperty("spring.shardingsphere.datasource.mydb.url");
    private static final String DATASOURCE_USERNAME = ENV.getProperty("spring.shardingsphere.datasource.mydb.username");
    private static final String DATASOURCE_PASSWORD = ENV.getProperty("spring.shardingsphere.datasource.mydb.password");


    /**
     * 检查分表获取的表名是否存在,不存在则自动建表
     * @param logicTable 逻辑表
     * @param resultTableNames 真实表名,例:t_user_202201
     * @return 存在于数据库中的真实表名集合
     */
    public static Set<String> getShardingTablesAndCreate(ShardingTableCacheEnum logicTable, Collection<String> resultTableNames) {
        return resultTableNames.stream().map(o -> getShardingTableAndCreate(logicTable, o)).collect(Collectors.toSet());
    }

    /**
     * 检查分表获取的表名是否存在,不存在则自动建表
     * @param logicTable 逻辑表
     * @param resultTableName 真实表名,例:t_user_202201
     * @return 确认存在于数据库中的真实表名
     */
    public static String getShardingTableAndCreate(ShardingTableCacheEnum logicTable, String resultTableName) {
        // 缓存中有此表则返回,没有则判断创建
        if (logicTable.resultTableNamesCache().contains(resultTableName)) {
            return resultTableName;
        } else {
            // 未创建的表返回逻辑空表
            boolean isSuccess = createShardingTable(logicTable, resultTableName);
            return isSuccess ? resultTableName : logicTable.logicTableName();
        }
    }

    /**
     * 重载全部缓存
     */
    public static void tableNameCacheReloadAll() {
        Arrays.stream(ShardingTableCacheEnum.values()).forEach(ShardingAlgorithmTool::tableNameCacheReload);
    }

    /**
     * 重载指定分表缓存
     * @param logicTable 逻辑表,例:t_user
     */
    public static void tableNameCacheReload(ShardingTableCacheEnum logicTable) {
        // 读取数据库中所有表名
        List<String> tableNameList = getAllTableNameBySchema(logicTable);
        // 更新缓存、配置(原子操作)
        logicTable.atomicUpdateCacheAndActualDataNodes(tableNameList);
        // 删除旧的缓存(如果存在)
        logicTable.resultTableNamesCache().clear();
        // 写入新的缓存
        logicTable.resultTableNamesCache().addAll(tableNameList);
        // 动态更新配置 actualDataNodes
        actualDataNodesRefresh(logicTable.logicTableName(), tableNameList);
    }

    /**
     * 获取所有表名
     * @return 表名集合
     * @param logicTable 逻辑表
     */
    public static List<String> getAllTableNameBySchema(ShardingTableCacheEnum logicTable) {
        List<String> tableNames = new ArrayList<>();
        if (StringUtils.isEmpty(DATASOURCE_URL) || StringUtils.isEmpty(DATASOURCE_USERNAME) || StringUtils.isEmpty(DATASOURCE_PASSWORD)) {
            log.error(">>>>>>>>>> 【ERROR】数据库连接配置有误,请稍后重试,URL:{}, username:{}, password:{}", DATASOURCE_URL, DATASOURCE_USERNAME, DATASOURCE_PASSWORD);
            throw new IllegalArgumentException("数据库连接配置有误,请稍后重试");
        }
        try (Connection conn = DriverManager.getConnection(DATASOURCE_URL, DATASOURCE_USERNAME, DATASOURCE_PASSWORD);
             Statement st = conn.createStatement()) {
            String logicTableName = logicTable.logicTableName();
            try (ResultSet rs = st.executeQuery("show TABLES like '" + logicTableName + TABLE_SPLIT_SYMBOL + "%'")) {
                while (rs.next()) {
                    String tableName = rs.getString(1);
                    // 匹配分表格式 例:^(t\_contract_\d{6})$
                    if (tableName != null && tableName.matches(String.format("^(%s\\d{6})$", logicTableName + TABLE_SPLIT_SYMBOL))) {
                        tableNames.add(rs.getString(1));
                    }
                }
            }
        } catch (SQLException e) {
            log.error(">>>>>>>>>> 【ERROR】数据库连接失败,请稍后重试,原因:{}", e.getMessage(), e);
            throw new IllegalArgumentException("数据库连接失败,请稍后重试");
        }
        return tableNames;
    }

    /**
     * 动态更新配置 actualDataNodes
     *
     * @param logicTableName  逻辑表名
     * @param tableNamesCache 真实表名集合
     */
    public static void actualDataNodesRefresh(String logicTableName, List<String> tableNamesCache)  {
        try {
            // 获取数据分片节点
            String dbName = "mydb";
            log.info(">>>>>>>>>> 【INFO】更新分表配置,logicTableName:{},tableNamesCache:{}", logicTableName, tableNamesCache);

            // generate actualDataNodes
            String newActualDataNodes = tableNamesCache.stream().map(o -> String.format("%s.%s", dbName, o)).collect(Collectors.joining(","));
            ShardingSphereDataSource shardingSphereDataSource = SpringUtil.getBean(ShardingSphereDataSource.class);
            updateShardRuleActualDataNodes(shardingSphereDataSource, logicTableName, newActualDataNodes);
        }catch (Exception e){
            log.error("初始化 动态表单失败,原因:{}", e.getMessage(), e);
        }
    }


    // --------------------------------------------------------------------------------------------------------------
    // 私有方法
    // --------------------------------------------------------------------------------------------------------------


    /**
     * 刷新ActualDataNodes
     */
    private static void updateShardRuleActualDataNodes(ShardingSphereDataSource dataSource, String logicTableName, String newActualDataNodes) {
        // Context manager.
        ContextManager contextManager = dataSource.getContextManager();

        // Rule configuration.
        String schemaName = "logic_db";
        Collection<RuleConfiguration> newRuleConfigList = new LinkedList<>();
        Collection<RuleConfiguration> oldRuleConfigList = dataSource.getContextManager()
                .getMetaDataContexts()
                .getMetaData(schemaName)
                .getRuleMetaData()
                .getConfigurations();

        for (RuleConfiguration oldRuleConfig : oldRuleConfigList) {
            if (oldRuleConfig instanceof AlgorithmProvidedShardingRuleConfiguration) {

                // Algorithm provided sharding rule configuration
                AlgorithmProvidedShardingRuleConfiguration oldAlgorithmConfig = (AlgorithmProvidedShardingRuleConfiguration) oldRuleConfig;
                AlgorithmProvidedShardingRuleConfiguration newAlgorithmConfig = new AlgorithmProvidedShardingRuleConfiguration();

                // Sharding table rule configuration Collection
                Collection<ShardingTableRuleConfiguration> newTableRuleConfigList = new LinkedList<>();
                Collection<ShardingTableRuleConfiguration> oldTableRuleConfigList = oldAlgorithmConfig.getTables();

                oldTableRuleConfigList.forEach(oldTableRuleConfig -> {
                    if (logicTableName.equals(oldTableRuleConfig.getLogicTable())) {
                        ShardingTableRuleConfiguration newTableRuleConfig = new ShardingTableRuleConfiguration(oldTableRuleConfig.getLogicTable(), newActualDataNodes);
                        newTableRuleConfig.setTableShardingStrategy(oldTableRuleConfig.getTableShardingStrategy());
                        newTableRuleConfig.setDatabaseShardingStrategy(oldTableRuleConfig.getDatabaseShardingStrategy());
                        newTableRuleConfig.setKeyGenerateStrategy(oldTableRuleConfig.getKeyGenerateStrategy());

                        newTableRuleConfigList.add(newTableRuleConfig);
                    } else {
                        newTableRuleConfigList.add(oldTableRuleConfig);
                    }
                });

                newAlgorithmConfig.setTables(newTableRuleConfigList);
                newAlgorithmConfig.setAutoTables(oldAlgorithmConfig.getAutoTables());
                newAlgorithmConfig.setBindingTableGroups(oldAlgorithmConfig.getBindingTableGroups());
                newAlgorithmConfig.setBroadcastTables(oldAlgorithmConfig.getBroadcastTables());
                newAlgorithmConfig.setDefaultDatabaseShardingStrategy(oldAlgorithmConfig.getDefaultDatabaseShardingStrategy());
                newAlgorithmConfig.setDefaultTableShardingStrategy(oldAlgorithmConfig.getDefaultTableShardingStrategy());
                newAlgorithmConfig.setDefaultKeyGenerateStrategy(oldAlgorithmConfig.getDefaultKeyGenerateStrategy());
                newAlgorithmConfig.setDefaultShardingColumn(oldAlgorithmConfig.getDefaultShardingColumn());
                newAlgorithmConfig.setShardingAlgorithms(oldAlgorithmConfig.getShardingAlgorithms());
                newAlgorithmConfig.setKeyGenerators(oldAlgorithmConfig.getKeyGenerators());

                newRuleConfigList.add(newAlgorithmConfig);
            }
        }

        // update context
        contextManager.alterRuleConfiguration(schemaName, newRuleConfigList);
    }

    /**
     * 创建分表
     * @param logicTable 逻辑表
     * @param resultTableName 真实表名,例:t_user_202201
     * @return 创建结果(true创建成功,false未创建)
     */
    private static boolean createShardingTable(ShardingTableCacheEnum logicTable, String resultTableName) {
        // 根据日期判断,当前月份之后分表不提前创建
        String month = resultTableName.replace(logicTable.logicTableName() + TABLE_SPLIT_SYMBOL,"");
        YearMonth shardingMonth = YearMonth.parse(month, DateTimeFormatter.ofPattern("yyyyMM"));
        if (shardingMonth.isAfter(YearMonth.now())) {
            return false;
        }

        synchronized (logicTable.logicTableName().intern()) {
            // 缓存中有此表 返回
            if (logicTable.resultTableNamesCache().contains(resultTableName)) {
                return false;
            }
            // 缓存中无此表,则建表并添加缓存
            executeSql(Collections.singletonList("CREATE TABLE IF NOT EXISTS `" + resultTableName + "` LIKE `" + logicTable.logicTableName() + "`;"));
            // 缓存重载
            tableNameCacheReload(logicTable);
        }
        return true;
    }

    /**
     * 执行SQL
     * @param sqlList SQL集合
     */
    private static void executeSql(List<String> sqlList) {
        if (StringUtils.isEmpty(DATASOURCE_URL) || StringUtils.isEmpty(DATASOURCE_USERNAME) || StringUtils.isEmpty(DATASOURCE_PASSWORD)) {
            log.error(">>>>>>>>>> 【ERROR】数据库连接配置有误,请稍后重试,URL:{}, username:{}, password:{}", DATASOURCE_URL, DATASOURCE_USERNAME, DATASOURCE_PASSWORD);
            throw new IllegalArgumentException("数据库连接配置有误,请稍后重试");
        }
        try (Connection conn = DriverManager.getConnection(DATASOURCE_URL, DATASOURCE_USERNAME, DATASOURCE_PASSWORD)) {
            try (Statement st = conn.createStatement()) {
                conn.setAutoCommit(false);
                for (String sql : sqlList) {
                    st.execute(sql);
                }
            } catch (Exception e) {
                conn.rollback();
                log.error(">>>>>>>>>> 【ERROR】数据表创建执行失败,请稍后重试,原因:{}", e.getMessage(), e);
                throw new IllegalArgumentException("数据表创建执行失败,请稍后重试");
            }
        } catch (SQLException e) {
            log.error(">>>>>>>>>> 【ERROR】数据库连接失败,请稍后重试,原因:{}", e.getMessage(), e);
            throw new IllegalArgumentException("数据库连接失败,请稍后重试");
        }
    }

}

6.ShardingTablesLoadRunner.java 初始化缓存类

import org.springframework.boot.CommandLineRunner;
import org.springframework.core.annotation.Order;
import org.springframework.stereotype.Component;

/**
 * <p> @Title ShardingTablesLoadRunner
 * <p> @Description 项目启动后,读取已有分表,进行缓存
 *
 * @author ACGkaka
 * @date 2022/12/20 15:41
 */
@Order(value = 1) // 数字越小,越先执行
@Component
public class ShardingTablesLoadRunner implements CommandLineRunner {

    @Override
    public void run(String... args) {
        // 读取已有分表,进行缓存
        ShardingAlgorithmTool.tableNameCacheReloadAll();
    }
}

7.SpringUtil.java Spring工具类

import org.springframework.beans.BeansException;
import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationContextAware;
import org.springframework.core.env.Environment;
import org.springframework.stereotype.Component;

/**
 * <p> @Title SpringUtil
 * <p> @Description Spring工具类
 *
 * @author ACGkaka
 * @date 2022/12/20 14:39
 */
@Component
public class SpringUtil implements ApplicationContextAware {

    private static ApplicationContext applicationContext = null;

    @Override
    public void setApplicationContext(ApplicationContext applicationContext) throws BeansException {
        SpringUtil.applicationContext = applicationContext;
    }

    public static ApplicationContext getApplicationContext() {
        return SpringUtil.applicationContext;
    }

    public static <T> T getBean(Class<T> cla) {
        return applicationContext.getBean(cla);
    }

    public static <T> T getBean(String name, Class<T> cal) {
        return applicationContext.getBean(name, cal);
    }

    public static String getProperty(String key) {
        return applicationContext.getBean(Environment.class).getProperty(key);
    }
}

8.源码测试

import com.demo.module.entity.User;
import com.demo.module.service.UserService;
import com.github.pagehelper.PageHelper;
import com.github.pagehelper.PageInfo;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
import java.util.ArrayList;
import java.util.List;

@SpringBootTest
class SpringbootDemoApplicationTests {

    private final DateTimeFormatter DATE_TIME_FORMATTER = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");

    @Autowired
    private UserService userService;

    @Test
    void saveTest() {
        List<User> users = new ArrayList<>(3);
        LocalDateTime time1 = LocalDateTime.parse("2022-01-01 00:00:00", DATE_TIME_FORMATTER);
        LocalDateTime time2 = LocalDateTime.parse("2022-02-01 00:00:00", DATE_TIME_FORMATTER);
        users.add(new User("ACGkaka_1", "123456", 10, time1, time1));
        users.add(new User("ACGkaka_2", "123456", 11, time2, time2));
        userService.saveBatch(users);
    }

    @Test
    void listTest() {
        PageHelper.startPage(1, 1);
        List<User> users = userService.list();
        PageInfo<User> pageInfo = new PageInfo<>(users);
        System.out.println(">>>>>>>>>> 【Result】<<<<<<<<<< ");
        System.out.println(pageInfo);
    }
}

9.测试结果

shardingjdbc自动创建表,# ShardingJDBC,java,数据库,spring

新增和查询可以正常分页查询,测试成功。

10.代码地址

地址: https://gitee.com/acgkaka/SpringBootExamples/tree/master/springboot-sharding-jdbc-month-5.1.0





参考地址:

1.SharDingJDBC-5.1.0按月水平分表+读写分离,自动创表、自动刷新节点表,https://blog.csdn.net/weixin_51216079/article/details/123873967

2.shardingjdbc 5.1 是否支持java 动态加载 数据节点,而不是在配置文件中用表达式定义好,https://community.sphere-ex.com/t/topic/1025文章来源地址https://www.toymoban.com/news/detail-786705.html

到了这里,关于Sharding-JDBC(六)5.1.0版本,实现按月分表、自动建表、自动刷新节点的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • SpringBoot+Sharding-jdbc+mybatis-plus实现水平分表

    这块我就不演示了

    2024年02月12日
    浏览(36)
  • 一、Sharding-JDBC系列01:整合SpringBoot实现分库分表,读写分离

    目录 一、概述 二、案例演示-水平分表 (1)、创建springboot工程 (2)、创建数据库和数据表 (3)、application.yaml配置分片规则   (4)、测试数据插入、查询操作 4.1、插入-控制台SQL日志  4.2、查询-控制台SQL日志  三、案例演示-水平分库 (1)、创建数据库和数据表  (2)、application.yaml配置

    2024年02月02日
    浏览(45)
  • Sharding-JDBC 自定义一致性哈希算法 + 虚拟节点 实现数据库分片策略

    分片操作是分片键 + 分片算法,也就是分片策略。目前Sharding-JDBC 支持多种分片策略: 标准分片策略 对应StandardShardingStrategy。提供对SQL语句中的=, IN和BETWEEN AND的分片操作支持。 复合分片策略 对应ComplexShardingStrategy。复合分片策略。提供对SQL语句中的=, IN和BETWEEN AND的分片操作

    2024年02月02日
    浏览(64)
  • Mybatis-Plus集成Sharding-JDBC与Flyway实现多租户分库分表

    公司产品部收到了一些重要客户的需求,他们希望能够依赖独立的数据库存储来支持他们的业务数据。与此同时,仍有许多中小客户,可以继续使用公共库以满足其需求。技术实现方面,此前持久层框架使用的Mybatis-plus,部分业务场景使用到了Sharding-JDBC用于分表,另外,我们

    2024年02月05日
    浏览(36)
  • Sharding-JDBC概述

    ​ 随着业务数据量的增加,原来所有的数据都是在一个数据库上的,网络IO及文件IO都集中在一个数据库上的,因此CPU、内存、文件IO、网络IO都可能会成为系统瓶颈。 当业务系统的数据容量接近或超过单台服务器的容量、QPS/TPS接近或超过单个数据库实例的处理极限等,此时

    2024年02月13日
    浏览(35)
  • Sharding-JDBC分库连接数优化

    一、背景 配运平台组的快递订单履约中心(cp-eofc)及物流平台履约中心(jdl-uep-ofc)系统都使用了ShardingSphere生态的sharding-jdbc作为分库分表中间件, 整个集群采用只分库不分表的设计,共16个MYSQL实例,每个实例有32个库,集群共512个库. 当每增加一台客户端主机,一个MYSQl实例最少要增加

    2024年02月14日
    浏览(37)
  • 若依框架集成sharding-jdbc

    本文基于4.X版本开发 官方网站 定位为轻量级Java框架,在Java的JDBC层提供的额外服务。 它使用客户端直连数据库,以jar包形式提供服务,无需额外部署和依赖,可理解为增强版的JDBC驱动,完全兼容JDBC和各种ORM框架。 适用于任何基于JDBC的ORM框架,如:JPA, Hibernate, Mybatis, Spri

    2024年02月08日
    浏览(99)
  • Mysql Sharding-JDBC读写分离

    深入Sharding-JDBC分库分表从入门到精通【黑马程序员】_哔哩哔哩_bilibili 1.1.1 msyql 多库 多表 多服务器  1.1.2 通过Sharding-JDBC jar包-增强JDBC 访问多数据源 - 自动处理成一个数据源 1.1.3 使用数据的人 - 使用Sharding-JDBC 自动合成的数据源 - 如同 一库一表操作   1.3.0 课程视频 07-Shard

    2024年02月02日
    浏览(37)
  • sharding-jdbc多数据源配置

    通过sharding-jdbc做分表这里就不多做介绍了,需要的可以看上一片文章 当项目中配置了多数据源,并且其中一个数据源需要使用sharding-jdbc分表时,配置如下 导入shardingjdbc依赖 这里使用的是4.0.1的配置,和上篇的3.1.0差别不大,详细配置大伙可以上官网查阅。 多数据源配置类

    2024年02月14日
    浏览(51)
  • Sharding-JDBC之PreciseShardingAlgorithm(精确分片算法)

      在我之前的文章里,数据的分库分表都是基于行表达式的方式来实现的,看起来也蛮好用,也挺简单的,但是有时会有些复杂的规则,可能使用行表达式策略会很复杂或者实现不了,我们就讲另外一种分片策略,精确分片算法,通常用来处理=或者in条件的情况比较多。

    2024年02月11日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包