【论文阅读笔记】A Recent Survey of Vision Transformers for Medical Image Segmentation

这篇具有很好参考价值的文章主要介绍了【论文阅读笔记】A Recent Survey of Vision Transformers for Medical Image Segmentation。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Khan A, Rauf Z, Khan A R, et al. A Recent Survey of Vision Transformers for Medical Image Segmentation[J]. arXiv preprint arXiv:2312.00634, 2023.

【论文概述】

本文是关于医学图像分割中视觉变换器(Vision Transformers,ViTs)的最新综述。文中详细回顾了ViTs及其与卷积神经网络(CNNs)结合形成的混合视觉Transformers(Hybrid Vision Transformers,HVTs)在医学图像分割方面的最新进展。文中讨论了这些技术如何通过模拟图像中的长距离关系来提高诊断、治疗计划和疾病监测的准确性。同时,还探讨了这些方法在不同医学图像模态(如CT、MRI、X射线等)中的实际应用,以及它们面临的挑战和未来的发展方向。

本文中规中矩,对涉及到的方法只是简单陈列,并没有细致的优缺点探讨,可以作为寻找对应方向论文的一个参考,笔记中对涉及到的方法根据之前读文经历进行简单的优缺点归纳。

【本文模型的分类方法】

  1. 本文首先对基于ViT的医学图像分割方法进行了全面综述,将其分为两大类:基于ViT的方法(ViT-based methods)和混合视觉Transformers的方法(HVT-based methods)。
  2. 对于基于ViT的方法,进一步将其细分为以下四类:
  • ViT在编码器(encoder)中的应用。

  • ViT在解码器(decoder)中的应用。

  • ViT在编码器-解码器之间(in between encoder-decoder)的应用。

  • 编码器和解码器都采用基于ViT的架构(both the encoder and decoder are ViT-based architectures)。

    3.对于混合视觉Transformers(HVT)的方法,提出了一个分类法:

  • 基于编码器的集成(encoder-based integration)。

  • 基于解码器的集成(decoder-based integration)。

【医学图像分割存在的一些挑战】

1.在医学图像中的对象内发现的尺寸范围很广

2.结构轮廓的模糊性,加上它们的不同纹理变化和复杂形状,这很容易产生不准确的结果

3.当将感兴趣的对象与背景隔离时,低强度对比度带来的挑战

4.没有足够的训练数据集

【4.1 ViT-based Medical Image Segmentation Approaches】

这一部分从四个方面探讨了ViTs在医学图像分割中的应用,包括ViT在编码器(Encoder)、解码器(Decoder)、编码器-解码器中的应用,以及ViT在编码器和解码器之间的应用。以下是对这些部分的总结:

  1. ViT in Encoder

    a recent survey of vision transformers for medical image segmentation,深度学习,论文阅读,笔记
    • 优点:通过在编码器中使用ViT,模型能有效捕获全局信息和多尺度特征,从而增强特征提取能力。
    • 代表模型:例如UNETR(UNet Transformer),利用ViT作为编码器来有效捕获输入体积的多尺度全球信息。
    • 缺点:可能会增加模型的计算复杂性和训练难度。
  2. ViT in Decoder

    a recent survey of vision transformers for medical image segmentation,深度学习,论文阅读,笔记
    • 优点:将ViT应用于解码器可以提高预测边界精度,并区分背景和兴趣对象。
    • 代表模型:如ConvTransSeg,采用CNN编码器和基于ViT的解码器。
    • 缺点:解码阶段的全局信息处理可能不如编码阶段有效。
  3. ViT in both Encoder-Decoder

    a recent survey of vision transformers for medical image segmentation,深度学习,论文阅读,笔记
    • 优点:在编码器和解码器都使用ViT的架构能全面利用ViT的长距离关注机制。
    • 代表模型:例如Swin-Unet和、nnFormer、MISSFormer、TransDeepLab,这些模型在编码器和解码器中都使用ViT结构,以捕获图像的全局和局部特征。
    • 缺点:这种方法可能导致更高的计算成本和更复杂的模型结构。
  4. ViT in between Encoder-Decoder

    a recent survey of vision transformers for medical image segmentation,深度学习,论文阅读,笔记
    • 优点:此方法通过在编码器和解码器之间引入ViT,可以在局部和全局特征之间建立更有效的连接。
    • 代表模型:例如ATTransUNet和DCA(Dual Cross-Attention)、ViT-V-Net,它们在编码器和解码器之间使用ViT,以改善特征融合和上下文建模。
    • 缺点:可能需要更复杂的训练策略来优化特征融合。

【4.2. Hybrid ViT-Based Medical Image Segmentation Approaches】

探讨了混合视觉Transformers(Hybrid Vision Transformers, HVTs)在医学图像分割中的应用。这些方法结合了卷积神经网络(CNNs)和视觉变换器(ViTs)的优势,以提高分割性能。以下是对这一部分内容的总结,包括三个主要方面:

  1. Hybrid ViT in Encoder

    a recent survey of vision transformers for medical image segmentation,深度学习,论文阅读,笔记
    • 优点:通过在编码器中结合HVT,模型能够同时捕获全局和局部特征,提高特征表示的丰富性。
    • 代表模型:例如TransUNet,结合了ViT的全局感知能力和U-Net的局部特征提取能力;TransBTS,结合了ViT和3D CNN,用于处理3D医学体积数据。
    • 缺点:混合模型可能会增加模型复杂度,需要更多的计算资源。
  2. Hybrid ViT in Decoder

    a recent survey of vision transformers for medical image segmentation,深度学习,论文阅读,笔记
    • 优点:在解码器中应用HVT可以提高分割边界的准确性,特别是在处理复杂的医学图像时。
    • 代表模型:例如UNetFormer,结合了3D Swin Transformer和CNN,以及基于变换器的解码器。
    • 缺点:这种方法可能导致解码阶段的计算负担加重。
  3. Hybrid ViT in both Encoder-Decoder

    a recent survey of vision transformers for medical image segmentation,深度学习,论文阅读,笔记
    • 优点:在编码器和解码器中都使用HVT可以充分利用ViT和CNN的优势,实现全面的特征提取和细节捕获。
    • 代表模型:例如MaxViT-UNet、SwinBTS,利用3D Swin Transformer和卷积操作来学习局部和全局级别的特征。
    • 缺点:这种结构可能导致模型过于复杂,难以训练和优化。

【5. ViT-based Medical Image Segmentation Applications】

作者详细讨论了基于视觉Transformers(Vision Transformers, ViTs)的医学图像分割应用,覆盖了从CT图像到X射线图像的多种医学成像方式。以下是对这一部分内容的概括总结:文章来源地址https://www.toymoban.com/news/detail-786772.html

  1. CT图像(CT Images)
    • 应用了ViT的方法能有效地处理CT图像,提高了病灶检测的准确性。
    • 代表模型:如TransBTS,利用ViT与3D CNN相结合,以处理3D CT数据。
  2. 病理学图像(Histopathological Images)
    • 在病理学图像分析中,ViT有助于细胞结构的精准分割和识别。
    • 代表模型:如TransPath,它将ViT与传统的CNN技术结合,以提高细胞和组织的分割效果。
  3. 显微镜图像(Microscopy Images)
    • ViT在处理显微镜图像时展现了提高分割准确性的潜力,特别是在复杂的细胞结构分割方面。
    • 代表模型:例如使用ViT的各种混合方法,它们结合CNN的局部特征识别能力和ViT的全局信息处理能力。
  4. MRI图像(MRI Images)
    • ViT在MRI图像分割中特别有效,能够处理复杂的脑部结构。
    • 代表模型:如Swin UNETR和TransBTS,它们在处理脑肿瘤分割等高复杂度任务中表现出色。
  5. 超声图像(Ultrasound Images)
    • ViT在超声图像分割中有助于提高边界检测的准确性,特别是在不规则形状的肿瘤识别方面。
    • 代表模型:例如结合ViT和CNN技术的混合模型,用于提高超声图像中特定组织或病变的识别能力。
  6. X射线图像(X-Ray Images)
    • ViT在X射线图像分割中表现出对细节的高敏感性,特别是在骨骼和其他硬组织的分割方面。
    • 代表模型:如结合CNN和ViT的模型,用于提高诸如肺部疾病识别和骨折检测的准确性。

到了这里,关于【论文阅读笔记】A Recent Survey of Vision Transformers for Medical Image Segmentation的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 论文阅读 A Survey of Large Language Models 3

    为了检验LLM的有效性和优越性,大量的任务和基准被用来进行实证评估和分析。我们首先介绍了LLM语言生成和理解的三种基本评估任务,然后介绍了LLM具有更复杂设置或目标的几个高级任务,最后讨论了现有的基准和实证分析。 在这一部分中,我们主要关注LLM的三种评估任务

    2024年02月13日
    浏览(46)
  • 论文笔记:ViTGAN: Training GANs with Vision Transformers

    2021 论文研究的问题是:ViT是否可以在不使用卷积或池化的情况下完成图像生成任务 即不用CNN,而使用ViT来完成图像生成任务 将ViT架构集成到GAN中,发现现有的GAN正则化方法与self-attention机制的交互很差,导致训练过程中严重的不稳定 ——引入了新的正则化技术来训练带有

    2024年02月07日
    浏览(42)
  • 论文阅读--Diffusion Models for Reinforcement Learning: A Survey

    一、论文概述 本文主要内容是关于在强化学习中应用扩散模型的综述。文章首先介绍了强化学习面临的挑战,以及扩散模型如何解决这些挑战。接着介绍了扩散模型的基础知识和在强化学习中的应用方法。然后讨论了扩散模型在强化学习中的不同角色,并对其在多个应用领域

    2024年03月20日
    浏览(51)
  • A Survey of Embodied AI: From Simulators to Research Tasks 论文阅读

    题目 :A Survey of Embodied AI: From Simulators to Research Tasks 作者 :Jiafei Duan, Samson Yu 来源 :arXiv 时间 :2022 通过评估当前的九个具体人工智能模拟器与我们提出的七个功能,本文旨在了解模拟器在具体人工智能研究中的使用及其局限性。 本文调查了实体人工智能的三个主要研究任

    2024年02月14日
    浏览(43)
  • 论文解析 -- A Survey of AIOps Methods for Failure Management

    此篇Survey是A Systematic Mapping Study in AIOps的后续研究 对于AIOPS中占比较高的Failure Management进行进一步的研究       Compared to traditional approaches, AIOps is: • fast , because it reacts independently and automatically to real-time problems, without re- quiring long manual debugging and analysis sessions; • efficient , be

    2023年04月20日
    浏览(40)
  • [论文阅读]Self-Supervised Learning for Videos: A Survey

    Schiappa, M. C., Rawat, Y. S., Shah, M. (2023). Self-Supervised Learning for Videos: A Survey. ACM Comput. Surv., 55(13s), 1–37. https://doi.org/10.1145/3577925 论文中文名称:视频的自监督学习综述 摘要: 深度学习在各个领域取得的显著成功依赖于大规模标注数据集的可用性。然而,获取标注是昂贵且需要巨

    2024年01月17日
    浏览(53)
  • 【论文阅读】A Survey on Dynamic Neural Networks for Natural Language Processing

    A Survey on Dynamic Neural Networks for Natural Language Processing 发表单位:University of California, San Diego 作者:Canwen Xu, Julian McAuley 发表会议: EACL 2023 论文地址:http://arxiv.org/abs/2202.07101 发布时间:2022.2.15(v1) 2023.2.24 (v2) 掌握主要内容 有效缩小大型Transformer模型是自然语言处理最新进展的主

    2024年02月03日
    浏览(44)
  • 【论文阅读笔记】Large Multimodal Agents: A Survey

    [写在开头] 深度学习小白,如果有不对的地方请大家多指正,对说的就是你大佬! 论文名称: Large Multimodal Agents: A Survey 论文链接: https://arxiv.org/pdf/2402.15116.pdf Large Multimodal Agents (LMAs) 大型多模态智能体 Motivation 大语言模型的诞生赋予了 agent 类人的决策和推理能力,如何将 LL

    2024年03月18日
    浏览(56)
  • Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models ----论文阅读

    Vary 的代码和模型均已开源,还给出了供大家试玩的网页 demo。感兴趣的小伙伴可以去试试 主页:https://varybase.github.io/ 部分内容参考:https://mp.weixin.qq.com/s/Sg_yHAVVN-yAYT61SNKvCA 官网:https://openai.com/research/clip (要了解的建议看这个,篇幅少点,论文中大量篇幅是介绍实验的) 论

    2024年02月03日
    浏览(49)
  • 【论文阅读】iTransformer: Inverted Transformers Are Effective for Time Series Forecasting

    论文链接 :[2310.06625] iTransformer: Inverted Transformers Are Effective for Time Series Forecasting (arxiv.org) 作者 :Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, Mingsheng Long 单位 :清华大学,蚂蚁集团 代码 :https://github.com/thuml/iTransformer 引用 :Liu Y, Hu T, Zhang H, et al. itransformer: Inverted

    2024年04月27日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包