Spark---累加器

这篇具有很好参考价值的文章主要介绍了Spark---累加器。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.累加器实现原理

累加器用来把 Executor 端变量信息聚合到 Driver 端。在 Driver 程序中定义的变量,在Executor 端的每个 Task 都会得到这个变量的一份新的副本,每个 task 更新这些副本的值后,传回 Driver 端进行 merge。

    //建立与Spark框架的连接
    val wordCount = new SparkConf().setMaster("local").setAppName("WordCount") //配置文件
    val context = new SparkContext(wordCount) //读取配置文件

    val dataRdd: RDD[Int] = context.makeRDD(List(1, 2, 3, 4),2)
    var sum=0
    dataRdd.foreach(num=>sum+=num)

    println(sum)
    context.stop()

运行结果:
Spark---累加器,大数据,scala,spark,spark,大数据,scala
我们预期是想要实现数据的累加,开始数据从Driver被传输到了Executor中进行计算,但是每个分区在累加数据完成之后并没有将计算结果返回到Driver端,所以导致最后的结果与预期的不一致。
Spark---累加器,大数据,scala,spark,spark,大数据,scala
对上述代码使用累加器

    val dataRdd: RDD[Int] = context.makeRDD(List(1, 2, 3, 4))
    val sum = context.longAccumulator("sum")
    dataRdd.foreach(num=>{
      //使用累加器
      sum.add(num)
    })

    //获取累加器的值
    println(sum.value)

运行结果:
Spark---累加器,大数据,scala,spark,spark,大数据,scala
由此可见,在使用了累加器之后,每个Executor在开始都会获得这个累加器变量,每个Executor在执行完成后,累加器会将每个Executor中累加器变量的值聚合到Driver端。
Spark---累加器,大数据,scala,spark,spark,大数据,scala

Spark提供了多种类型的累加器,以下是其中的一些:
Spark---累加器,大数据,scala,spark,spark,大数据,scala

2.自定义累加器

用户可以通过继承AccumulatorV2来自定义累加器。需求:自定义累加器实现WordCount案例。

AccumulatorV2[IN,OUT]中:
IN:输入数据的类型
OUT:输出数据类型

Spark---累加器,大数据,scala,spark,spark,大数据,scala
WordCount案例实现完整代码:

package bigdata.wordcount.leijiaqi

import bigdata.wordcount.leijiaqi
import org.apache.spark.rdd.RDD
import org.apache.spark.util.AccumulatorV2
import org.apache.spark.{SparkConf, SparkContext}

import scala.collection.mutable

/**
 * 使用累加器完成WordCount案例
 */
object Spark_addDemo {
  def main(args: Array[String]): Unit = {
    //建立与Spark框架的连接
    val wordCount = new SparkConf().setMaster("local").setAppName("WordCount") //配置文件
    val context = new SparkContext(wordCount) //读取配置文件

    val dataRDD: RDD[String] = context.textFile("D:\\learnSoftWare\\IdeaProject\\Spark_Demo\\Spark_Core\\src\\main\\com.mao\\datas\\1.txt")

    //创建累加器对象
    val wordCountAccumulator = new WordCountAccumulator
    //向Spark中进行注册
    context.register(wordCountAccumulator,"wordCountAccumulator")

    //实现累加
    dataRDD.foreach(word => {
      wordCountAccumulator.add(word)
    })
    //获取累加结果,打印在控制台上
    println(wordCountAccumulator.value)

    //关闭链接
    context.stop()
  }

}

class WordCountAccumulator extends  AccumulatorV2[String,mutable.Map[String,Long]]
{

  //定义一个map用于存储累加后的结果
  var map: mutable.Map[String, Long] =mutable.Map[String,Long]()

  //累加器是否为初始状态
  override def isZero: Boolean = {
    map.isEmpty
  }

  //复制累加器
  override def copy(): AccumulatorV2[String, mutable.Map[String, Long]] = {
    new WordCountAccumulator()
  }

  //重置累加器
  override def reset(): Unit = {
    map.clear()
  }

  //向累加器添加数据IN
  override def add(word: String): Unit = {
    // 查询 map 中是否存在相同的单词
    // 如果有相同的单词,那么单词的数量加 1
    // 如果没有相同的单词,那么在 map 中增加这个单词
    val newValue = map.getOrElse(word, 0L) + 1
    map.update(word,newValue)
  }

  //合并累加器
  override def merge(other: AccumulatorV2[String, mutable.Map[String, Long]]): Unit = {
    var map1=this.map
    var map2=other.value

    //合并两个map
    map2.foreach({
      case (word,count)=>{
        val newValue = map1.getOrElse(word,0L)+count
        map1.update(word,newValue)
      }
    })
  }

  //返回累加器的结果(OUT)
  override def value: mutable.Map[String, Long] = this.map
}
}

运行结果:
Spark---累加器,大数据,scala,spark,spark,大数据,scala

3.广播变量

在Apache Spark中,广播变量(Broadcast Variables)是一种特殊类型的变量,用于优化数据共享。当Spark应用程序在集群中的多个节点上运行时,每个节点都需要访问相同的数据集。如果数据集很大,那么将这些数据发送到每个节点可能会非常耗时和低效。 广播变量提供了一种方法,可以在集群中的所有节点上共享数据集的一个只读副本 ,从而避免了在每个节点上重复发送数据。

Spark---累加器,大数据,scala,spark,spark,大数据,scala
广播变量也叫分布式只读变量,它可以将闭包数据发送到每个Executor的内存中来达到共享的目的,Executor其实就相当于一个JVM,在启动的时候会自动分配内存。

    //建立与Spark框架的连接
    val wordCount = new SparkConf().setMaster("local").setAppName("WordCount") //配置文件
    val context = new SparkContext(wordCount) //读取配置文件

    val rdd1 = context.makeRDD(List(("a", 1), ("b", 2), ("c", 3), ("d", 4)), 4)
    val list = List(("a", 4), ("b", 5), ("c", 6), ("d", 7))
    // 声明广播变量
    val broadcast: Broadcast[List[(String, Int)]] = context.broadcast(list)
    val resultRDD: RDD[(String, (Int, Int))] = rdd1.map {
      case (key, num) => {
        var num2 = 0
        // 使用广播变量
        for ((k, v) <- broadcast.value) {
          if (k == key) {
            num2 = v
          }
        }
        (key, (num, num2))
      }
    }

    resultRDD.collect().foreach(print)
    
    context.stop()

Spark---累加器,大数据,scala,spark,spark,大数据,scala文章来源地址https://www.toymoban.com/news/detail-787257.html

到了这里,关于Spark---累加器的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Spark编程-共享变量(广播变量和累加器)

     Spark中的两个重要抽象一个是RDD,另一个就是共享变量。         在默认情况下, 当Spark在集群的多个不同节点的多个任务上并行运行一个函数时,它会把函数中涉及到的每个变量,在每个任务上都生成一个副本 。         但是,有时候,需要在多个任务之间共享变

    2024年02月16日
    浏览(55)
  • Spark核心--checkpoint、 广播变量、累加器介绍

    rdd 的优化手段,可以提升计算速度。将计算过程中某个rdd保存在缓存或者hdfs上,在后面计算时,使用该rdd可以直接从缓存或者hdfs上直接读取数据 1-1 缓存使用 1、提升计算速度  2、容错 什么样的rdd需要缓存? 1、rdd的计算时间比较长,获取数据的计算比较复杂 2、rdd被频繁使

    2024年01月16日
    浏览(46)
  • 【Spark原理系列】Accumulator累加器原理用法示例源码详解

    源自专栏《SparkML:Spark ML系列专栏目录》 Accumulator是Spark中的一种分布式变量,用于在并行计算中进行累加操作。它是由MapReduce模型中的“全局计数器”概念演化而来的。 Accumulator提供了一个可写的分布式变量,可以在并行计算中进行累加操作。在Spark中,当一个任务对Accum

    2024年03月14日
    浏览(62)
  • Flink 源码剖析|累加器

    累加器是实现了 加法运算 功能和 合并运算 (合并多个累加器的结果)功能的一种数据结构,在作业结束后,可以获取所有部分(各个 operator 的各个 subtask)合并后的最终结果并发送到客户端。 Flink 的累加器均实现了 Accumulator 接口,包括如下 2 个方法用于支持加法运算和合

    2024年02月21日
    浏览(53)
  • 计算机组成原理 累加器实验

    计算机组成原理实验环境 理解累加器的概念和作用。 连接运算器、存储器和累加器,熟悉计算机的数据通路。 掌握使用微命令执行各种操作的方法。 做好实验预习,读懂实验电路图,熟悉实验元器件的功能特性和使用方法。在实验之前设计好要使用的微命令,填入表 6-2 、

    2024年02月06日
    浏览(41)
  • Flink 源码剖析|4. 累加器与相关工具方法

    累加器是实现了 加法运算 功能和 合并运算 (合并多个累加器的结果)功能的一种数据结构,在作业结束后,可以获取所有部分(各个 operator 的各个 subtask)合并后的最终结果并发送到客户端。 Flink 的累加器均实现了 Accumulator 接口,包括如下 2 个方法用于支持加法运算和合

    2024年03月15日
    浏览(45)
  • 【数字IC/FPGA】百度昆仑芯手撕代码--累加器

    已知一个加法器IP,其功能是计算两个数的和,但这个和延迟两个周期才会输出。现在有一串连续的数据输入,每个周期都不间断,试问最少需要例化几个上述的加法器IP,才可以实现累加的功能。 由于加法器两个周期后才能得到结果(再将该结果作为加法器的输入进行累加

    2024年02月09日
    浏览(41)
  • 《JUC并发编程 - 高级篇》05 -共享模型之无锁 (CAS | 原子整数 | 原子引用 | 原子数组 | 字段更新器 | 原子累加器 | Unsafe类 )

    有如下需求,保证 account.withdraw 取款方法的线程安全 原有实现并不是线程安全的 测试代码 执行测试代码,某次执行结果 5.1.1 为么不安全 withdraw 方法是临界区,会存在线程安全问题 查看下字节码 多线程在执行过程中可能会出现指令的交错,从而结果错误! 5.1.2 解决思路1

    2023年04月12日
    浏览(45)
  • Spark Scala大数据编程实例

    Scala是一门现代的多范式编程语言,平滑地集成了面向对象和函数式语言的特性,旨在以简练、优雅的方式来表达常用编程模式。Scala的设计吸收借鉴了许多种编程语言的思想,只有很少量特点是Scala自己独有的。Scala语言的名称来自于“可伸展的语言”,从写个小脚本到建立

    2024年02月04日
    浏览(51)
  • Spark 读写 es 数据(scala 版)

    读取 hdfs 文件 解析采用 fast-json : 1、 pom.xml 2、 main 文件 运行结果: 1、 pom.xml 2、 main 文件 参考文章 Spark读写ES数据时遇到的问题总结 Spark读写ES 使用Apache Spark将数据写入ElasticSearch

    2024年02月11日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包