mac M系列芯片安装chatGLM3-6b模型

这篇具有很好参考价值的文章主要介绍了mac M系列芯片安装chatGLM3-6b模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1 环境安装

1.1 mac安装conda.

下载miniconda,并安装

curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh
sh Miniconda3-latest-MacOSX-arm64.sh

1.2 创建虚拟环境并激活

创建名为chatglm3的虚拟环境,python版本为3.10.2
激活环境(后续要在这个环境安装pytorch及依赖包)

conda create -n chatglm3 python==3.10.2
conda activate chatglm3

1.3 安装pytorch-nightly

conda install pytorch torchvision torchaudio -c pytorch-nightly

1.4 下载chatglm3 代码

1 下载地址,git地址:https://github.com/THUDM/ChatGLM3
2 进入代码中,安装依赖包

git clone https://github.com/THUDM/ChatGLM3
cd ChatGLM3-main
pip install -r requirement.txt

2 模型下载

推荐使用方式3下载,可以下载任意开源大模型,且速度飞快,没有墙限制

方式1: 直接在huggingface官网下载(国内比较难)

https://huggingface.co/dwdcth/chatglm3-6b-int4

方式2 使用国内镜像

https://hf-mirror.com/dwdcth/chatglm3-6b-int4

方式3

  • 使用modelscope下载
    https://modelscope.cn/models/ZhipuAI/chatglm3-6b/summary

  • 安装魔塔依赖
    pip install modelscope -U

  • 代码中的路径即为要下载的模型,可以自行选择模型下载(mac 16G推荐下载int4)
    model_dir = snapshot_download(‘ZhipuAI/chatglm3-6b’, revision=‘v1.0.1’)

  • 模型默认保存路径为家目录下, ~/.cache/modelscope/hub/ZhipuAI/ChatGLM3-6B/

1 安装依赖
pip install modelscope -U

2 使用代码下载
from modelscope import snapshot_download
model_dir = snapshot_download("ZhipuAI/chatglm3-6b", revision = "v1.0.0")

3 模型使用

1 修改web_demo2.py中的device为"mps"
DEVICE = ‘mps’
如果测试cli_demo.py文件,修改如下代码,模型需要时float()类型的,不然会报错。(不过好像还没有用到mps,待测试)
DEVICE = ‘mps’
model = AutoModel.from_pretrained(TOKENIZER_PATH, trust_remote_code=True).float()

# web_demo2.py 运行
streamlit run basic_demo/web_demo2.py 

4 模型web展示

streamlit run basic_demo/web_demo2.py

macbookpro chatglm3,算法工程化,大模型,chatglm,魔塔社区文章来源地址https://www.toymoban.com/news/detail-787273.html

到了这里,关于mac M系列芯片安装chatGLM3-6b模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • CP03大语言模型ChatGLM3-6B特性代码解读(1)

    对话模式、工具模式、代码解释器模式例程阅读理解。 ChatGLM3-6B已经进行了中文场景的训练,可以直接运用于中文场景。本次学习的示例,提供了三种模式。包括: Chat: 对话模式,在此模式下可以与模型进行对话; Tool: 工具模式,模型除了对话外,还可以通过工具进行其他

    2024年02月22日
    浏览(39)
  • 开源模型应用落地-chatglm3-6b-gradio-入门篇(七)

        早前的文章,我们都是通过输入命令的方式来使用Chatglm3-6b模型。现在,我们可以通过使用gradio,通过一个界面与模型进行交互。这样做可以减少重复加载模型和修改代码的麻烦, 让我们更方便地体验模型的效果。     是一个用于构建交互式界面的Python库。它使得在Py

    2024年04月26日
    浏览(43)
  • 解锁大语言模型LLM对话潜力:ChatGLM3-6B的多轮对话实践与深入探索

    随着人工智能技术的飞速发展,多轮对话系统已成为自然语言处理领域的研究热点。多轮对话要求模型不仅能理解用户的当前输入,还需结合对话历史进行连贯回复,这对模型的上下文理解和生成能力提出了更高要求。ChatGLM3-6B作为一种先进的大型语言模型,在多轮对话任务

    2024年02月22日
    浏览(56)
  • LLM大语言模型(三):使用ChatGLM3-6B的函数调用功能前先学会Python的装饰器

    目录 ChatGLM3-6B的函数调用模式示例 本地启动ChatGLM3-6B工具模式 如何在ChatGLM3-6B里新增一个自定义函数呢? get_weather基于Python的装饰器实现 函数注解@register_tool 现在我们来自定义一个kuakuawo()函数 ChatGLM3-6B目前有三种使用模式: 对话模式 工具模式(也就是本文要介绍的函数调用

    2024年01月25日
    浏览(72)
  • 从零开始部署ubuntu+Anaconda3+langchain-chatchat+chatglm3-6b大模型,本地知识库(二)

    接上文:从零开始部署ubuntu+Anaconda3+langchain-chatchat+chatglm3-6b大模型,本地知识库 Langchain-chatchat 0.2.10 推荐使用python3.11.7,通过下面命令进行python环境创建。 如下图 安装完毕后,通过以下命令激活python虚拟环境 如下图,shell命令行前面会出现(langchain)这个虚拟环境名。 转到

    2024年03月21日
    浏览(56)
  • 从零开始部署ubuntu+Anaconda3+langchain-chatchat+chatglm3-6b大模型,本地知识库(完结篇)

    相关文章: 从零开始部署ubuntu+Anaconda3+langchain-chatchat+chatglm3-6b大模型,本地知识库(一) https://blog.csdn.net/hya168/article/details/131460230 从零开始部署ubuntu+Anaconda3+langchain-chatchat+chatglm3-6b大模型,本地知识库(二) https://blog.csdn.net/hya168/article/details/135870440 生成默认配置文件 此命令

    2024年02月20日
    浏览(64)
  • 【本地大模型部署与微调】ChatGLM3-6b、m3e、one-api、Fastgpt、LLaMA-Factory

    本文档详细介绍了使用ChatGLM3-6b大模型、m3e向量模型、one-api接口管理以及Fastgpt的知识库,成功的在本地搭建了一个大模型。此外,还利用LLaMA-Factory进行了大模型的微调。 1.ChatGLM3-6b 2.m3e 3.One-API 4.Fastgpt 5.LLaMA-Factory 1.1创建腾讯云服务器 注意: ChatGLM3-6b的大模型40多个G,购买腾讯

    2024年03月22日
    浏览(45)
  • 基于MacBook Pro M1芯片运行chatglm2-6b大模型

    ChatGLM2-6B代码地址 chatglm2-6b模型地址 Mac M1芯片部署 ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性: 更强大的性能。 更长的上下文。 更高效的推理。 更开放的协

    2024年01月25日
    浏览(59)
  • ChatGLM3-6B的本地api调用

    1.运行openai_api_demo路径下的openai_api.py 启动后界面: 注意:本地api调到的前提是——本地部署了ChatGLM3-6B,本地部署的教程可参考: 20分钟部署ChatGLM3-6B 部署了若CUDA可用,默认会以CUDA方式运行,占用显存约5.9G;若CUDA不可用,则会以内存方式进行加载,官方称CPU调用需要32G内存

    2024年01月21日
    浏览(53)
  • 使用vLLM和ChatGLM3-6b批量推理

    当数据量大的时候,比如百万级别,使用 ChatGLM3-6b 推理的速度是很慢的。发现使用 vLLM 和 ChatGLM3-6b 批量推理极大的提高了推理效率。本文主要通过一个简单的例子进行实践。 除了 Python(本文使用 3.11)、CUDA(本文使用 11.8)外,还要安装 vllm、pytorch、xformers 等库,特别注意

    2024年02月04日
    浏览(55)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包