OpenCV | 光流估计

这篇具有很好参考价值的文章主要介绍了OpenCV | 光流估计。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

光流估计

光流是空间运动物体在观测成像平面上的像素运动的“瞬时速度”,根据各个像素点的速度的速度矢量特征,可以对图像进行动态分析,例如目标跟踪

  • 高度恒定:同一点随着时间的变化,其亮度不会发生改变。
  • 小运动:随着时间的变化不会引起位置的剧烈变化,只有小运动情况下才能用前后帧之间单位位置变化引起的灰度变化去近似灰度对位置的偏导数。
  • 空间一致:一个场景上临近的点投影到图像上也是临近点,且临近点速度一致,因为光流法基本方程约束只有一个,而要求x,y方向的速度,有两个未知变量, 所以需要联立n多个方程求解。

cv2.calcOpticalFlowPyrlLK(): 参数

  • prevlmage 前一帧图像
  • nextlmage 当前帧图像
  • prevPts 待跟踪的特征点向量
  • winSize 搜索窗口的大小
  • maxLevel 最大的金字塔层数 返回:
  • nextPts 输出跟踪特征点向量
  • status 特征点是否找到,找到的状态为1,未找到的状态为0

test

import numpy as np
import cv2

cap = cv2.VideoCapture('test.avi')

# 角点检测所需参数
feature_params = dict( maxCorners = 100,
                       qualityLevel = 0.3,
                       minDistance = 7,
                       blockSize = 7 )

# lucas kanade参数
lk_params = dict( winSize  = (15,15),
                  maxLevel = 2,
                  criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))

# 随机颜色条
color = np.random.randint(0,255,(100,3))

# 拿到第一帧图像
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)

# 创建一个mask
mask = np.zeros_like(old_frame)

while(True):
    ret,frame = cap.read()
    frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    # 需要传入前一帧和当前图像
    p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)

    # st=1表示
    good_new = p1[st==1]
    good_old = p0[st==1]

    # draw the tracks
    for i,(new,old) in enumerate(zip(good_new,good_old)):
        a,b = new.ravel()
        c,d = old.ravel()
        mask = cv2.line(mask, (int(a),int(b)),(int(c),int(d)), color[i].tolist(), 2)
        frame = cv2.circle(frame,(int(a),int(b)),5,color[i].tolist(),-1)
    img = cv2.add(frame,mask)

    cv2.imshow('frame',img)
    k = cv2.waitKey(150) & 0xff
    if k == 27:
        break

   #更新
    old_gray = frame_gray.copy()
    p0 = good_new.reshape(-1,1,2)

cv2.destroyAllWindows()
cap.release()

运行后随便截取一帧为:

OpenCV | 光流估计,opencv,人工智能,计算机视觉文章来源地址https://www.toymoban.com/news/detail-787491.html

到了这里,关于OpenCV | 光流估计的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 计算机视觉中的光流估计技术

    非常感谢您提供这么详细的任务要求和约束条件,我会尽我所能完成这篇高质量的技术博客文章。让我们正式开始吧。 作者:禅与计算机程序设计艺术 计算机视觉是人工智能领域中一个非常重要的分支,它致力于让计算机能够像人类一样感知和理解周围的视觉世界。其中光流估

    2024年04月15日
    浏览(36)
  • 【人工智能】— 逻辑回归分类、对数几率、决策边界、似然估计、梯度下降

    考虑二分类问题,其中每个样本由一个特征向量表示。 直观理解:将特征向量 x text{x} x 映射到一个实数 w T x text{w}^Ttext{x} w T x 一个正的值 w T x text{w}^Ttext{x} w T x 表示 x text{x} x 属于正类的可能性较高。 一个负的值 w T x text{w}^Ttext{x} w T x 表示 x text{x} x 属于负类的可能性

    2024年02月09日
    浏览(47)
  • 阶段五:深度学习和人工智能(学习人工智能的应用领域,如自然语言处理,计算机视觉等)

    Python是人工智能领域最流行的编程语言之一,它具有简单易学、功能强大、库丰富等优点,因此在自然语言处理、计算机视觉等领域得到了广泛应用。 自然语言处理 自然语言处理是人工智能领域的一个重要分支,它主要研究如何让计算机理解和处理人类语言。Python在自然语

    2024年02月04日
    浏览(76)
  • 深入探索人工智能与计算机视觉

    在当今数字化时代,人工智能(AI)和计算机视觉(CV)作为两大前沿技术,正以惊人的速度改变着我们的生活。本文将深入探讨人工智能与计算机视觉的关系、应用以及未来发展方向。 1. 人工智能与计算机视觉的关系 人工智能是一门涵盖众多技术领域的学科,旨在使计算机

    2024年04月14日
    浏览(57)
  • 探索人工智能 | 智能推荐系统 未来没有人比计算机更懂你

    智能推荐系统(Recommendation Systems)利用机器学习和数据挖掘技术,根据用户的兴趣和行为,提供个性化推荐的产品、内容或服务。 智能推荐系统是一种利用机器学习和数据分析技术的应用程序,旨在根据用户的兴趣、偏好和行为模式,向其推荐个性化的产品、服务或内容。

    2024年02月13日
    浏览(48)
  • 【人工智能课程】计算机科学博士作业一

    模型拟合:用深度神经网络拟合一个回归模型。从各种角度对其改进,评价指标为MSE。 掌握技巧: 熟悉并掌握深度学习模型训练的基本技巧。 提高PyTorch的使用熟练度。 掌握改进深度学习的方法。 数据集下载: Kaggle下载数据: https://www.kaggle.com/competitions/ml2022spring-hw1 百度云

    2024年01月23日
    浏览(59)
  • 【人工智能课程】计算机科学博士作业三

    来源:李宏毅2022课程第10课的作业 图片攻击是指故意对数字图像进行修改,以使机器学习模型产生错误的输出或者产生预期之外的结果。这种攻击是通过将微小的、通常对人类难以察觉的扰动应用于输入图像来实现的。图片攻击是对深度学习系统中的鲁棒性和安全性的一种测

    2024年03月16日
    浏览(73)
  • hnu计算机与人工智能概论5.6

    最近有点忙,好久没更新了,大家见谅!最后一关howell也做不出来  第1关:数据分析基础 1.将scores.xls文件读到名为df的dataframe中 2.添加平均分列:考勤、实验操作、实验报告的平均 3.输出前3行学生的平均分列表,控制小数点后两位 4.输出学生人数和班级数 5.分别输出实验报

    2024年02月04日
    浏览(54)
  • 人工智能与计算机辅助决策的技术融合

    人工智能(Artificial Intelligence, AI)和计算机辅助决策(Computer-Aided Decision, CAD)是两个不同的领域,但它们之间存在密切的联系和相互作用。人工智能主要关注于模拟和创造人类智能的机器,包括学习、理解自然语言、视觉识别、推理和决策等方面。而计算机辅助决策则关注于利用

    2024年02月22日
    浏览(59)
  • hnu计算机与人工智能概论答案3.8

    连夜更新,求求关注!! 写在前面:这一课难度较低,报错时多看看冒号和缩进有无错误,祝大家做题顺利!!! 第1关:python分支入门基础 根据提示,在右侧编辑器补充代码,完成分支程序设计(用函数调用的方式来实现)。 第1题: 闰年的判断:判断某一年是否是闰年,

    2024年02月08日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包