数据挖掘(2.3)--数据预处理

这篇具有很好参考价值的文章主要介绍了数据挖掘(2.3)--数据预处理。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

三、数据集成和转换

1.数据集成 

2.数据冗余性 

2.1 皮尔森相关系数

2.2卡方检验 

3.数据转换

四、数据的规约和变换

1.数据归约

2数据离散化


三、数据集成和转换

1.数据集成 

数据集成是将不同来源的数据整合并一致地存储起来的过程

不同来源的数据可能有不同的格式、不同的元信息和不同的表示方式等。

首先需要将它们变成一致的形式。

通常这个过程牵涉到数据架构的集成,处理属性值冲突,处理数据冗余性,对数据进行转化等的处理过程。

其中两个主要的问题:数据冗余和数据转换


2.数据冗余性 

原因:

数据冗余可能由许多技术和业务上的原因导致,

同一属性或对象在不同的数据库中的名称可能是不同的,

某些属性可能是由其他属性导出的。

2.1 皮尔森相关系数

皮尔森相关系数是计算两个数数值向量之间的相关性

数据归约和数据泛化的区别,数据挖掘,人工智能,python,数据挖掘,数据分析

此图,纯手工技艺。

当相关系数大于0时,称两个向量正相关;

当相关系数小于0时,称两个向量负相关;

当相关系数等于0时,称两个向量不相关。

容易得出,相关系数的取值范围是[-1,1]。

热力图展示环节 (matplotlib库的问题,导致热力图显示不全,建议升版本或降低版本

python使用corr()函数计算数据中两两元素的皮尔系数 

数据归约和数据泛化的区别,数据挖掘,人工智能,python,数据挖掘,数据分析

2.2卡方检验 

 对于非数值型的变量,计算其相关性可以使用卡方检验方法进行,卡方检验的计算方式为:

数据归约和数据泛化的区别,数据挖掘,人工智能,python,数据挖掘,数据分析

求和是对每一种不同的变量取值情形进行的,Oi是实际观测到的概率,而Ei是在变量彼此独立的假设下该情况发生概率的估计。


3.数据转换

数据在集成过程中很多情况下需要进行转换,数据转换包括平滑、聚合、泛化、规范化、属性和特征的重构等操作。
(1)数据平滑。数据平滑是将噪声从数据中移除的过程。数据平滑通常是对数据本身进行的,如在连续性的假设下,对时间序列进行平滑,以降低异常点的影响;数据平滑有时也指对概率的平滑。
(2)数据聚合。数据聚合是将数据进行总结描述的过程。数据聚合的目的一般是为了对数据进行统计分析,数据立方体和在线分析处理(OLAP)都是数据聚合的形式。
(3)数据泛化。数据泛化是将数据在概念层次上转化为较高层次的概念的过程。
(4)数据规范化。数据规范化是将数据的范围变换到一个比较小的、确定的范围的过程。数据规范化在一些机器学习方法的预处理中比较常用,可以改善分类效果和抑制过学习。常用的数据规范化方法有最小最大规范化、2-score规范化和十进制比例规范化等。 


 如下的公式是最小最大规范化的例子,它将数据映射到[0,1] 区间。
数据归约和数据泛化的区别,数据挖掘,人工智能,python,数据挖掘,数据分析
z-score规范化使用数据的均值μ和标准差σ来将数据转化到某个区间,如下的公式为z-score标准化的例子,规范化后的数据均值为0,标准差为1。

 数据归约和数据泛化的区别,数据挖掘,人工智能,python,数据挖掘,数据分析

十进制比例规范化使用数据绝对值的极值进行规范化.对数据仅使用十进制放缩的方式进行规范化。如要将466,33,- 100,-10这几个数进行规范化,结果为:0.466,0.033,-0.1,0.01。

四、数据的规约和变换

1.数据归约

数据归约是用更简化的方式来表示数据集,使得简化后的表示可以用较少的数据量来产生与挖掘全体数据类似的效果。
数据归约可以从几个方面入手:

  • 如果对数据的每个维度的物理意义很清楚,就可以舍弃某些无用的维度,并使用平均值、汇总和计数等方式来进行聚合表示,这种方式称为数据立方体聚合
  • 如果数据只有有些维度对数据挖掘有益,就可以去除不重要的维度,保留对挖掘有帮助的维度,这种方式称为维度归约;
  • 如果数据具有潜在的相关性,那么数据实际的维度可能并不高,可以用变换的方式,用低维的数据对高维数据进行近似的表示,这种方式称为数据压缩;
  • 另外一种处理数据相关性的方式是将数据表示为不同的形式来减小数据量,如聚类、回归等,这种方式称为数据块消减。

2数据离散化

为什么要数据离散化?

  • 计算机存储器无法存储无限精度的值,计算机处理器也不能对无限精度的数进行处理。
  • 某些数据挖掘方法需要离散值的属性,这也催生了对数据进行离散化的需要。

数据离散化是对数据的属性值进行的预处理,它是将属性值划分为有限个部分,之后使用这个部分的标签来代替原来的属性值。

数据离散化的方法主要有分箱、聚类、自顶向下拆分、自底向上合并等
使用分箱的数据离散化方法是通过先将属性值分箱,再将属性值替换为箱标签的离散化方法;

使用聚类的数据离散化方法是通过先将属性值聚类,再使用类标签作为新的属性值的离散化方法。

通过拆分和合并来进行数据离散化的方法:基于信息增益的离散化、基于卡方检验的离散化和基于自然分区的离散化。文章来源地址https://www.toymoban.com/news/detail-787580.html

到了这里,关于数据挖掘(2.3)--数据预处理的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据挖掘 | 实验一 数据的清洗与预处理

    1)了解数据质量问题、掌握常用解决方法; 2)熟练掌握数据预处理方法,并使用Python语言实现; PC机 + Python3.7环境(pycharm、anaconda或其它都可以) 清洗与预处理的必要性 在实际数据挖掘过程中,我们拿到的初始数据,往往存在缺失值、重复值、异常值或者错误值,通常这

    2023年04月08日
    浏览(48)
  • 【数据挖掘 | 数据预处理】缺失值处理 & 重复值处理 & 文本处理 确定不来看看?

    🤵‍♂️ 个人主页: @AI_magician 📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。 👨‍💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!🐱‍🏍 🙋‍♂️声明:本人目前大学就读于大二,研究兴趣方向人工智能硬件(虽然硬件还没开始玩,但一直

    2024年02月07日
    浏览(72)
  • 数据挖掘学习——数据预处理方法代码汇总(python)

    目录 一、归一化处理方法 (1)min-max方法(离散归一化) (2)零-均值规范化方法 (3)小数定标规范化 二、插值法 (1)拉格朗日插值法 三、相关性分析 (1)pearson相关性系数 (2)spearman相关性系数 四、主成分分析(PCA) 归一化常用方法有: (1)min-max方法(离散归一化

    2024年02月08日
    浏览(71)
  • 数据预处理在数据挖掘中的重要性

    数据挖掘作为从大量数据中提取有用信息和知识的过程,其结果的准确性和可靠性直接受到数据质量的影响。因此,数据预处理在数据挖掘中扮演着至关重要的角色。让我们探讨数据质量对数据挖掘结果的影响,并介绍常见的数据预处理方法以及它们如何提高数据挖掘的效果

    2024年03月20日
    浏览(47)
  • Python数据挖掘 数据预处理案例(以航空公司数据为例)

    1、数据清洗 2、数据集成 3、数据可视化 根据航空公司系统内的客户基本信息、乘机信息以及积分信息等详细数据,依据末次飞行日期( LAST_FLIGHT_DATE),以2014年3月31日为结束时间,选取宽度为两年的时间段作为分析观测窗口,抽取观测窗口2012年4月1日至2014年3月31日内有乘机记

    2024年02月04日
    浏览(42)
  • 数据挖掘实验(二)数据预处理【等深分箱与等宽分箱】

    在分箱前,一定要先排序数据,再将它们分到等深(等宽)的箱中。 常见的有两种分箱方法:等深分箱和等宽分箱。 等深分箱:按记录数进行分箱,每箱具有相同的记录数,每箱的记录数称为箱的权重,也称箱子的深度。 等宽分箱:在整个属性值的区间上平均分布,即每个

    2024年02月07日
    浏览(45)
  • GEO生信数据挖掘(六)实践案例——四分类结核病基因数据预处理分析

    前面五节,我们使用阿尔兹海默症数据做了一个数据预处理案例,包括如下内容: GEO生信数据挖掘(一)数据集下载和初步观察 GEO生信数据挖掘(二)下载基因芯片平台文件及注释 GEO生信数据挖掘(三)芯片探针ID与基因名映射处理 GEO生信数据挖掘(四)数据清洗(离群值

    2024年02月07日
    浏览(58)
  • GPT-4科研实践:数据可视化、统计分析、编程、机器学习数据挖掘、数据预处理、代码优化、科研方法论

    查看原文GPT4科研实践技术与AI绘图 GPT对于每个科研人员已经成为不可或缺的辅助工具,不同的研究领域和项目具有不同的需求。 例如在科研编程、绘图领域 : 1、编程建议和示例代码:  无论你使用的编程语言是Python、R、MATLAB还是其他语言,都可以为你提供相关的代码示例。

    2024年02月07日
    浏览(63)
  • 【Python实战】数据预处理(数据清理、集成、变换、归约)

    因疫情原因,距上次写博客已过许久 这次回看以前的书籍,发现数据预处理这块在业务中极其重要 业务中,数据的准确率对业务的影响至关重要 好的数据往往百利而无一害,相对的,不好的数据会带来无法预期的损失 管理好数据,就能管理好业务,环环相扣,生生不息 所

    2024年02月08日
    浏览(49)
  • python数据预处理—数据清洗、数据集成、数据变换、数据归约

    进行数据分析时,需要预先把进入模型算法的数据进行数据预处理。一般我们接收到的数据很多都是“脏数据”,里面可能包含缺失值、异常值、重复值等;同时有效标签或者特征需要进一步筛选,得到有效数据,最终把原始数据处理成符合相关模型算法的输入标准,从而进

    2024年02月02日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包