Python教程(24)——全方位解析Python中的装饰器

这篇具有很好参考价值的文章主要介绍了Python教程(24)——全方位解析Python中的装饰器。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Python装饰器是一种特殊的函数,它接收一个函数作为参数,然后返回一个新的函数,用于扩展或修改原始函数的行为。装饰器提供了一种便捷的方式来在不修改被装饰函数源代码的情况下,增加、修改或包装函数的功能。通俗点说就是尽量不修改原有功能代码的情况下,给原有的功能添加新的功能。

装饰器的基本语法是使用@符号将装饰器函数应用于目标函数。

@decorator
def target_function():
    # 函数体

在这里,decorator是一个装饰器函数,它接受一个函数作为参数,并返回一个新的函数。target_function是目标函数,即需要被装饰的函数。
当你在目标函数上使用装饰器语法时,它等效于以下调用方式:

def target_function():
    # 函数体

target_function = decorator(target_function)

换句话说,装饰器函数将会接收目标函数作为参数,并将其替换为返回的新函数。这样,每当你调用target_function时,实际上调用的是装饰器返回的新函数。

为什么需要装饰器

前面说装饰器的好处就是尽量不修改原有功能代码的情况下,给原有的功能添加新的功能,道理虽然都懂,但是如何在代码上体现出来呢?现在假设我们有一个函数say_hello用于打印"Hello, world!",这个say_hello函数可以理解为业务上需要扩展的函数。

import time

def say_hello():
    time.sleep(1)
    print("Hello, world!")

say_hello()

现在,我们希望在每次调用say_hello函数时,都能在控制台打印出相应的日志,包括函数的名称、开始执行的时间和执行耗时。一种方法是直接修改say_hello函数的代码。

import time

def say_hello():
    start_time = time.time()
    print("Hello, world!")
    end_time = time.time()
    execution_time = end_time - start_time
    print(f"Function say_hello executed in {execution_time} seconds")

这样做确实可以实现我们的需求,但是这种改法第一太侵入式(修改原有的代码)了,第二如果有很多类似的函数需要添加相同的功能,或者后续需求变化需要删除或修改这个日志功能,那么修改每个函数的代码将变得非常繁琐和冗余。
所以我们写个新的函数log_decorator进行封装一下,这样子就可以避免太侵入式修改了,不修改原有函数say_hello的功能。

import time

def log_decorator(func):
    start_time = time.time()
    func()
    end_time = time.time()
    execution_time = end_time - start_time
    print(f"Function {func.__name__} executed in {execution_time} seconds")

def say_hello():
    time.sleep(1)
    print("Hello, world!")

log_decorator(say_hello)

但是这样子的改法却改变了原有代码逻辑,因为原有的代码逻辑是调用say_hello,现在却变成调用log_decorator,虽然也可以,但是改变了逻辑,不够简洁明了,不够优雅。
这时,装饰器就能派上用场了。我们可以通过定义一个装饰器函数,将统一的日志功能应用于多个函数:

import time

def log_decorator(func):
    def wrapper():
        start_time = time.time()
        func()
        end_time = time.time()
        execution_time = end_time - start_time
        print(f"Function {func.__name__} executed in {execution_time} seconds")
    return wrapper

@log_decorator
def say_hello():
    time.sleep(1)
    print("Hello, world!")

say_hello()

现在,每次调用say_hello函数时,实际上会调用wrapper函数,从而实现了在函数执行前后打印日志的功能。这种方式不仅避免了直接修改say_hello函数的代码,还可以轻松地将同样的日志功能应用于其他函数,只需要使用@log_decorator装饰器语法即可。上面调用相当于以下这样,当然前提要把装饰器@log_decorator去掉或者注释掉。

say_hello = log_decorator(say_hello) 
say_hello()

所以可以看出装饰器的写法@log_decorator这个就相当于say_hello = log_decorator(say_hello),此处函数返回值命名,不一定非要命名为say_hello,这样是也可以的。

result = log_decorator(say_hello) 
result()

带参数的原函数

如果原函数是带参数的话,那么装饰器需要怎么写呢?
我们需要把参数写到log_decorator里面的那个函数实际上wrapper,下面我们可以通过使用*args**kwargs来接收和传递参数下面是一个示例,演示如何创建一个适用于带参数的函数的装饰器:

import time

def log_decorator(func):
    def wrapper(*args, **kwargs):
        start_time = time.time()
        func(*args, **kwargs)
        end_time = time.time()
        execution_time = end_time - start_time
        print(f"Function {func.__name__} executed in {execution_time} seconds")
    return wrapper

在上述示例中,log_decorator是一个装饰器函数,它接收任意类型和数量的参数,并使用*args**kwargs来接收和传递参数。在wrapper函数内部,使用func(*args, **kwargs)来调用原始函数,并将参数传递给它。
现在,我们可以使用@语法来应用这个装饰器,无论带有参数还是不带参数的函数都可以。

@log_decorator
def say_hello():
    print("Hello, world!")

@log_decorator
def greet(name):
    print(f"Hello, {name}!")

say_hello()  # 执行带装饰器的say_hello函数
greet("Alittle")  # 执行带装饰器的greet函数

@log_decorator分别为say_hellogreet函数应用了装饰器。无论是不带参数的say_hello函数还是带参数的greet函数,装饰器都能正常工作。

带参数的装饰器

当需要给装饰器传递参数时,可以使用装饰器工厂函数来创建带参数的装饰器。装饰器工厂函数实际上是一个闭包函数,它接收参数并返回一个真正的装饰器函数。比如我们需要为不同的业务逻辑添加不同的日志等级,就需要在装饰器中添加参数了。

import time

def log_decorator_with_params(log_level):
    def log_decorator(func):
        def wrapper(*args, **kwargs):
            start_time = time.time()
            result = func(*args, **kwargs)
            end_time = time.time()
            execution_time = end_time - start_time
            print(f"{log_level}: Function {func.__name__} executed in {execution_time} seconds")
            return result
        return wrapper
    return log_decorator

如上所示,这种写法可以称为闭包的闭包,log_decorator_with_params是一个装饰器工厂函数,它接收一个参数log_level,用于指定日志的前缀。它返回一个真正的装饰器函数log_decorator,该装饰器函数在函数执行前后打印带有指定前缀的日志。

现在,我们可以使用@语法来应用带参数的装饰器。

@log_decorator_with_params(log_level="INFO")
def say_hello():
    print("Hello, world!")

@log_decorator_with_params(log_level="DEBUG")
def greet(name):
    print(f"Hello, {name}!")

say_hello()  # 执行带装饰器的say_hello函数
greet("Alice")  # 执行带装饰器的greet函数

上述示例中,@log_decorator_with_params("INFO")@log_decorator_with_params("DEBUG")分别为say_hellogreet函数应用了带参数的装饰器。运行代码时,会分别打印日志等级。
在定义装饰器函数wrapper时,使用了*args**kwargs作为参数,这样能够适配任意类型和数量的参数,并将其传递给原始函数。这样可以确保带参数的函数装饰器适用于不同的函数签名。通过使用装饰器工厂函数,我们可以轻松创建带参数的装饰器,提供更大的灵活性,让装饰器可以根据不同的场景和需求来定制其行为。

多个装饰器

在Python中,我们可以使用多个装饰器来装饰同一个函数,每个装饰器可以为函数添加不同的功能。

使用多个装饰器的顺序非常重要,因为它们按照从上到下的顺序应用。最上层的装饰器最先应用,然后是下一层的装饰器,依此类推。下面是一个示例,演示了使用多个装饰器来装饰同一个函数:

def decorator1(func):
    print("decorator1 before")
    def wrapper():
        print("Decorator 1")
        func()
    return wrapper

def decorator2(func):
    print("decorator2 before")
    def wrapper():
        print("Decorator 2")
        func()
    return wrapper

def decorator3(func):
    print("decorator3 before")
    def wrapper():
        print("Decorator 3")
        func()
    return wrapper

@decorator1
@decorator2
@decorator3
def say_hello():
    print("Hello, world!")

say_hello()

在上面的示例中,decorator1decorator2decorator3分别是三个装饰器函数。say_hello函数先被decorator3装饰,然后再被decorator2装饰,最后被decorator1装饰,也就是说执行顺序是从下到上的,上面的装饰器的执行就和下面这样一样:

# 执行顺序是从下到上的
result = decorator1(decorator2(decorator3(say_hello)))

但是因为每个装饰器返回的是函数名,函数名是不会被执行的,只有函数名加上括号(),函数才会被执行。decorator3(say_hello)返回一个函数名,并不会被执行,所以多个装饰器就等同于下面这样:

result3 = decorator3(say_hello)
result2 = decorator2(result3)
result = decorator1(result2)
result()

所以运行上述代码,输出结果为:

decorator3 before
decorator2 before
decorator1 before
Decorator 1
Decorator 2
Decorator 3
Hello, world!

从结果可以看出,装饰器的顺序是从下到上依次应用的,但是内部的闭包函数是从上往下执行的,有点类似出栈入栈的过程。
在实际开发中,我们可以将多个装饰器结合起来,实现更复杂的功能。但是,需要注意的是,装饰器的顺序可能会影响功能的实现逻辑。因此,在使用多个装饰器时,需要仔细考虑装饰器的顺序以及它们的影响。

类装饰器

除了函数装饰器,Python还支持使用类来实现装饰器,这被称为类装饰器。类装饰器通过将装饰器逻辑封装到一个类中,使得装饰器更加灵活和可复用。

要创建一个类装饰器,我们需要定义一个类,并实现以下两个方法之一:__init____call__

  • __init__方法会在装饰器创建时调用,可以用来初始化装饰器的参数。
  • __call__方法会在装饰器应用于被装饰的函数时被调用,可以用来包装并修改函数的行为。
class Logger:
    def __init__(self, func):
        self.func = func

    def __call__(self, *args, **kwargs):
        print(f"Logging: Calling function {self.func.__name__}")
        return self.func(*args, **kwargs)

@Logger
def say_hello():
    print("Hello, world!")

say_hello()

如上所示,Logger是一个类装饰器。它的__init__方法初始化了被装饰的函数,并将其保存为self.func__call方法在装饰器应用于函数时被调用,在这里我们输出了日志信息并调用了原始函数。

运行上述代码,输出结果为:

Logging: Calling function say_hello
Hello, world!

从结果可以看出,装饰器的逻辑被执行,并在调用函数前后打印了日志信息。类装饰器相对于函数装饰器提供了更多的灵活性,可以在初始化阶段接收额外的参数,并在__call__方法中灵活地定制装饰器的行为。使用类装饰器可以更好地组织和重用装饰器逻辑,使代码更具可读性和可维护性。

更多精彩内容,请关注同名公众:一点sir(alittle-sir)
文章来源地址https://www.toymoban.com/news/detail-787787.html

到了这里,关于Python教程(24)——全方位解析Python中的装饰器的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【全方位解析】如何写好技术文章

    前言 为何而写 技术成长 :相对于庞大的计算机领域的知识体系,人的记忆还是太有限了,而且随着年龄的增大,记忆同样也会逐渐衰退,正如俗话所说“好记性不如烂笔头”。并且在分享博客的过程中,我们也可以和大神交流,进而发现自己的认知错误,纠正知识体系。最

    2024年02月16日
    浏览(46)
  • Go反射终极指南:从基础到高级全方位解析

    在本文中,我们将全面深入地探讨Go语言的反射机制。从反射的基础概念、为什么需要反射,到如何在Go中实现反射,以及在高级编程场景如泛型编程和插件架构中的应用,本文为您提供一站式的学习指南。 关注【TechLeadCloud】,分享互联网架构、云服务技术的全维度知识。作

    2024年02月08日
    浏览(46)
  • 【全方位解析】如何获取客户端/服务端真实 IP

    1.比如在投票系统开发中,为了防止刷票,我们需要限制每个 IP 地址只能投票一次 2.当网站受到诸如 DDoS(Distributed Denial of Service,分布式拒绝服务攻击)等攻击时,我们需要快速定位攻击者 IP 3.在渗透测试过程中,经常会碰到网站有 CDN(Content Distribution Network,内容交付网络

    2024年02月07日
    浏览(55)
  • Go泛型解密:从基础到实战的全方位解析

    本篇文章深入探讨了Go语言的泛型特性,从其基础概念到高级用法,并通过实战示例展示了其在实际项目中的应用。 关注【TechLeadCloud】,分享互联网架构、云服务技术的全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人

    2024年02月08日
    浏览(44)
  • 【30天熟悉Go语言】9 Go函数全方位解析

    作者 :秃秃爱健身,多平台博客专家,某大厂后端开发,个人IP起于源码分析文章 😋。 源码系列专栏 :Spring MVC源码系列、Spring Boot源码系列、SpringCloud源码系列(含:Ribbon、Feign)、Nacos源码系列、RocketMQ源码系列、Spring Cloud Gateway使用到源码分析系列、分布式事务Seata使用到

    2024年02月10日
    浏览(60)
  • 一文章让你彻底了解OpenAI:CSDN独家全方位解析

    目录 什么是OpenAI OpenAI的发展历程 相关名词解释 API​ GPT​ GPT-2​ GPT-3​

    2024年02月09日
    浏览(57)
  • 深度解析知网AIGC检测:从理论到实践,全方位探索前沿技术

    大家好,小发猫降ai今天来聊聊深度解析知网AIGC检测:从理论到实践,全方位探索前沿技术,希望能给大家提供一点参考。降ai辅写 以下是针对论文AI辅写率高的情况,提供一些修改建议和技巧,可以借助此类工具: 还有: 标题: \\\"深度解析知网AIGC检测:从理论到实践,全方

    2024年03月16日
    浏览(64)
  • C++环形缓冲区设计与实现:从原理到应用的全方位解析

    环形缓冲区(Circular Buffer),也被称为循环缓冲区(Cyclic Buffer)或者环形队列(Ring Buffer),是一种数据结构类型,它在内存中形成一个环形的存储空间。环形缓冲区的特点是其终点和起点是相连的,形成一个环状结构。这种数据结构在处理流数据和实现数据缓存等场景中具

    2024年02月07日
    浏览(60)
  • Ubuntu22.04上下左右全方位美化教程

    为了记录和自己的反复查看,我还是用自己的方式记录一下我的替换过程,为了回忆和共同进步 官方文档将 Plank 描述为“这个星球上最简洁的 dock”,其目的是仅提供一个 dock 需要的功能。尽管这是很基础的一个库,却可以被扩展,创造其他的含更多高级功能的 dock 程序。

    2024年02月10日
    浏览(57)
  • C生万物 | 指针入门到进阶全方位覆盖教程

    文章篇幅较长,可前往电脑端进行学习💻 之前很多粉丝私信我说 C语言指针 怎么这么难,看了很多视频都学不懂,于是我写了一篇有关指针从入门到进阶的教学,帮助那些对指针很困扰的同学有一个好的学习途径,下面是本文的参考配套视频,出自b站【鹏哥C语言】,鹏哥讲

    2024年02月09日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包