C++力扣题目--94,144,145二叉树非递归(迭代)遍历

这篇具有很好参考价值的文章主要介绍了C++力扣题目--94,144,145二叉树非递归(迭代)遍历。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

为什么可以用迭代法(非递归的方式)来实现二叉树的前后中序遍历呢?

我们在栈与队列:匹配问题都是栈的强项 (opens new window)中提到了,递归的实现就是:每一次递归调用都会把函数的局部变量、参数值和返回地址等压入调用栈中,然后递归返回的时候,从栈顶弹出上一次递归的各项参数,所以这就是递归为什么可以返回上一层位置的原因。

此时大家应该知道我们用栈也可以是实现二叉树的前后中序遍历了。

#前序遍历(迭代法)

我们先看一下前序遍历。

前序遍历是中左右,每次先处理的是中间节点,那么先将根节点放入栈中,然后将右孩子加入栈,再加入左孩子。

为什么要先加入 右孩子,再加入左孩子呢? 因为这样出栈的时候才是中左右的顺序。

动画如下:

C++力扣题目--94,144,145二叉树非递归(迭代)遍历,c++,leetcode,算法

不难写出如下代码: (注意代码中空节点不入栈

class Solution {
public:
    vector<int> preorderTraversal(TreeNode* root) {
        stack<TreeNode*> st;
        vector<int> result;
        if (root == NULL) return result;
        st.push(root);
        while (!st.empty()) {
            TreeNode* node = st.top();                       // 中
            st.pop();
            result.push_back(node->val);
            if (node->right) st.push(node->right);           // 右(空节点不入栈)
            if (node->left) st.push(node->left);             // 左(空节点不入栈)
        }
        return result;
    }
};

此时会发现貌似使用迭代法写出前序遍历并不难,确实不难。

此时是不是想改一点前序遍历代码顺序就把中序遍历搞出来了?

其实还真不行!

但接下来,再用迭代法写中序遍历的时候,会发现套路又不一样了,目前的前序遍历的逻辑无法直接应用到中序遍历上。

#中序遍历(迭代法)

为了解释清楚,我说明一下 刚刚在迭代的过程中,其实我们有两个操作:

  1. 处理:将元素放进result数组中
  2. 访问:遍历节点

分析一下为什么刚刚写的前序遍历的代码,不能和中序遍历通用呢,因为前序遍历的顺序是中左右,先访问的元素是中间节点,要处理的元素也是中间节点,所以刚刚才能写出相对简洁的代码,因为要访问的元素和要处理的元素顺序是一致的,都是中间节点。

那么再看看中序遍历,中序遍历是左中右,先访问的是二叉树顶部的节点,然后一层一层向下访问,直到到达树左面的最底部,再开始处理节点(也就是在把节点的数值放进result数组中),这就造成了处理顺序和访问顺序是不一致的。

那么在使用迭代法写中序遍历,就需要借用指针的遍历来帮助访问节点,栈则用来处理节点上的元素。

动画如下:

C++力扣题目--94,144,145二叉树非递归(迭代)遍历,c++,leetcode,算法

中序遍历,可以写出如下代码:

class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> result;
        stack<TreeNode*> st;
        TreeNode* cur = root;
        while (cur != NULL || !st.empty()) {
            if (cur != NULL) { // 指针来访问节点,访问到最底层
                st.push(cur); // 将访问的节点放进栈
                cur = cur->left;                // 左
            } else {
                cur = st.top(); // 从栈里弹出的数据,就是要处理的数据(放进result数组里的数据)
                st.pop();
                result.push_back(cur->val);     // 中
                cur = cur->right;               // 右
            }
        }
        return result;
    }
};

#后序遍历(迭代法)

再来看后序遍历,先序遍历是中左右,后续遍历是左右中,那么我们只需要调整一下先序遍历的代码顺序,就变成中右左的遍历顺序,然后在反转result数组,输出的结果顺序就是左右中了,如下图:

C++力扣题目--94,144,145二叉树非递归(迭代)遍历,c++,leetcode,算法

所以后序遍历只需要前序遍历的代码稍作修改就可以了,代码如下:

class Solution {
public:
    vector<int> postorderTraversal(TreeNode* root) {
        stack<TreeNode*> st;
        vector<int> result;
        if (root == NULL) return result;
        st.push(root);
        while (!st.empty()) {
            TreeNode* node = st.top();
            st.pop();
            result.push_back(node->val);
            if (node->left) st.push(node->left); // 相对于前序遍历,这更改一下入栈顺序 (空节点不入栈)
            if (node->right) st.push(node->right); // 空节点不入栈
        }
        reverse(result.begin(), result.end()); // 将结果反转之后就是左右中的顺序了
        return result;
    }
};

#总结

此时我们用迭代法写出了二叉树的前后中序遍历,大家可以看出前序和中序是完全两种代码风格,并不像递归写法那样代码稍做调整,就可以实现前后中序。

这是因为前序遍历中访问节点(遍历节点)和处理节点(将元素放进result数组中)可以同步处理,但是中序就无法做到同步!

上面这句话,可能一些同学不太理解,建议自己亲手用迭代法,先写出来前序,再试试能不能写出中序,就能理解了。文章来源地址https://www.toymoban.com/news/detail-787914.html

到了这里,关于C++力扣题目--94,144,145二叉树非递归(迭代)遍历的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 算法训练day13Leetcode144 145 94 二叉树的前(中)(后)序遍历

    https://www.bilibili.com/video/BV1Hy4y1t7ij/?vd_source=8272bd48fee17396a4a1746c256ab0ae 二叉树的种类 在我们解题过程中二叉树有两种主要的形式:满二叉树和完全二叉树。 满二叉树:如果一棵二叉树只有度为0的结点和度为2的结点,并且度为0的结点在同一层上,则这棵二叉树为满二叉树。 什么

    2024年01月15日
    浏览(55)
  • 算法D14 | 二叉树1 | 144. 二叉树的前序遍历 145. 二叉树的后序遍历 94. 二叉树的中序遍历

    理论基础  需要了解 二叉树的种类,存储方式,遍历方式 以及二叉树的定义  文章讲解: 二叉树既可以链式存储(利用指针,类似栈和队列),也可以用数组表示。 深度优先遍历 前序遍历(递归法,迭代法) 中序遍历(递归法,迭代法) 后序遍历(递归法,迭代法)

    2024年02月20日
    浏览(38)
  • 【Leetcode60天带刷】day14二叉树——144.二叉树的前序遍历,145.二叉树的后序遍历,94.二叉树的中序遍历

    144. 二叉树的前序遍历 给你二叉树的根节点  root  ,返回它节点值的  前序   遍历。 示例 1: 示例 2: 示例 3: 示例 4: 示例 5: 提示: 树中节点数目在范围  [0, 100]  内 -100 = Node.val = 100 145. 二叉树的后序遍历 给你一棵二叉树的根节点  root  ,返回其节点值的  后序遍历

    2024年02月10日
    浏览(52)
  • 从C语言到C++_25(树的十道OJ题)力扣:606+102+107+236+426+105+106+144+94+145

    目录 606. 根据二叉树创建字符串 - 力扣(LeetCode) 解析代码: 102. 二叉树的层序遍历 - 力扣(LeetCode) 解析代码: 107. 二叉树的层序遍历 II - 力扣(LeetCode) 解析代码: 236. 二叉树的最近公共祖先 - 力扣(LeetCode) 解析代码:(法一) 解析代码:(法二) 剑指 Offer 36. 二叉搜

    2024年02月13日
    浏览(57)
  • C++力扣题目617--合并二叉树

    给你两棵二叉树:  root1  和  root2  。 想象一下,当你将其中一棵覆盖到另一棵之上时,两棵树上的一些节点将会重叠(而另一些不会)。你需要将这两棵树合并成一棵新二叉树。合并的规则是:如果两个节点重叠,那么将这两个节点的值相加作为合并后节点的新值;否则

    2024年01月20日
    浏览(42)
  • C++力扣题目654--最大二叉树

    给定一个不重复的整数数组  nums  。  最大二叉树  可以用下面的算法从  nums  递归地构建: 创建一个根节点,其值为  nums  中的最大值。 递归地在最大值  左边  的  子数组前缀上  构建左子树。 递归地在最大值  右边  的  子数组后缀上  构建右子树。 返回  nums  构

    2024年01月20日
    浏览(40)
  • C++力扣题目101--对称二叉树

    力扣题目链接(opens new window) 给定一个二叉树,检查它是否是镜像对称的。   首先想清楚,判断对称二叉树要比较的是哪两个节点,要比较的可不是左右节点! 对于二叉树是否对称,要比较的是根节点的左子树与右子树是不是相互翻转的,理解这一点就知道了 其实我们要比较

    2024年01月25日
    浏览(38)
  • C++力扣题目104--二叉树的最大深度

    给定一个二叉树,找出其最大深度。 二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。 说明: 叶子节点是指没有子节点的节点。 示例: 给定二叉树 [3,9,20,null,null,15,7], 返回它的最大深度 3 。 看完本篇可以一起做了如下两道题目: 104.二叉树的最大深度(opens n

    2024年01月16日
    浏览(65)
  • 94. 二叉树的中序遍历(递归+迭代)

    题目链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 解题思路:  方法一:递归 中序遍历的操作定义为,若二叉树为空,则空操作,否则: 中序遍历左子树 访问根节点 中序遍历右子树 AC代码  方法二:迭代,递归的循环版本,借助栈来完成递归, 如果root !=nul

    2024年02月07日
    浏览(53)
  • 【力扣】94、二叉树的中序遍历

    注:二叉树的中序遍历:左根右;

    2024年02月12日
    浏览(67)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包