【MATLAB】ICEEMDAN_LSTM神经网络时序预测算法

这篇具有很好参考价值的文章主要介绍了【MATLAB】ICEEMDAN_LSTM神经网络时序预测算法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

【MATLAB】ICEEMDAN_LSTM神经网络时序预测算法,MATLAB | 时序预测算法,人工智能,机器学习,深度学习

1 基本定义

ICEEMDAN-LSTM神经网络时序预测算法是一种结合了改进的完全扩展经验模态分解(ICEEMDAN)和长短期记忆神经网络(LSTM)的时间序列预测方法。

ICEEMDAN算法是对CEEMDAN算法的改进,通过引入改进的完全扩展经验模态分解(ICEEMDAN),旨在进一步优化IMF的提取和分解精度。在ICEEMDAN中,通过改进噪声的添加方式和分解策略,能够更准确地提取时间序列中的复杂模式,提高预测的准确性。

与CEEMDAN-LSTM算法类似,ICEEMDAN-LSTM算法首先使用ICEEMDAN对原始时间序列进行分解,得到一系列固有模式函数(IMF)和一个残差序列。然后,将每个IMF作为LSTM的输入,利用LSTM模型对每个IMF进行预测。通过构建多个独立的LSTM模型,每个模型都有不同的初始化条件和参数设置。每个LSTM模型都会对时间序列进行训练和预测,最后将它们的预测结果进行综合,例如通过平均或加权平均的方式得到最终的预测结果。

ICEEMDAN-LSTM算法的优势在于通过结合ICEEMDAN和LSTM,能够更好地捕捉时间序列中的复杂模式,提高预测的准确性和稳定性。ICEEMDAN对信号的分解更为准确,有助于提取时间序列中的非线性特征,而LSTM能够学习到时间序列中的长期依赖关系,进一步提高了预测的准确性。

在实际应用中,ICEEMDAN-LSTM算法可以应用于各种领域,如金融市场预测、气象预报、能源消耗预测等。由于该算法能够处理非线性、非平稳信号,并且具有良好的预测性能,因此具有广泛的应用前景。

需要注意的是,任何一种算法都有其局限性,ICEEMDAN-LSTM算法也不例外。例如,对于大规模时间序列数据的处理可能会面临计算性能的挑战,并且对于异常值敏感等问题仍需进一步研究和优化。因此,在使用该算法时需要根据实际需求进行适当的调整和改进。

2 出图效果

附出图效果如下:

【MATLAB】ICEEMDAN_LSTM神经网络时序预测算法,MATLAB | 时序预测算法,人工智能,机器学习,深度学习

【MATLAB】ICEEMDAN_LSTM神经网络时序预测算法,MATLAB | 时序预测算法,人工智能,机器学习,深度学习

【MATLAB】ICEEMDAN_LSTM神经网络时序预测算法,MATLAB | 时序预测算法,人工智能,机器学习,深度学习

【MATLAB】ICEEMDAN_LSTM神经网络时序预测算法,MATLAB | 时序预测算法,人工智能,机器学习,深度学习

【MATLAB】ICEEMDAN_LSTM神经网络时序预测算法,MATLAB | 时序预测算法,人工智能,机器学习,深度学习文章来源地址https://www.toymoban.com/news/detail-788279.html

到了这里,关于【MATLAB】ICEEMDAN_LSTM神经网络时序预测算法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包