Spark与PySpark(1.概述、框架、模块)

这篇具有很好参考价值的文章主要介绍了Spark与PySpark(1.概述、框架、模块)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1.Spark 概念

2. Hadoop和Spark的对比

3. Spark特点

3.1 运行速度快

3.2 简单易用

3.3 通用性强

3.4 可以允许运行在很多地方

4. Spark框架模块

4.1 Spark Core

4.2 SparkSQL

4.3 SparkStreaming

4.4 MLlib

4.5 GraphX

5. Spark的运行模式

5.1 本地模式(单机) Local运行模式

5.2 Standalone模式(集群)

5.3 HadoopYARN模式(集群)

5.4 Kubernetes模式(容器集群)

5.5 云服务模式(运行在云平台上)

6. Spark架构

6.1 在Spark中任务运行层面

6.2 在Spark中资源层面

1.Spark 概念

  • 定义:Apache Spark 是用于大规模数据处理的统一分析引擎
  • 其特点就是对任意类型的数据进行自定义计算。
  • Spark可以计算:结构化、半结构化、非结构化等各种类型的数据结构,同时也支持使用Python、Java、Scala、R以及SQL语言去开发应用程序计算数据。
  • Spark的适用面非常广泛,所以,被称之为统一的(适用面广)的分析引擎(数据处理)
  • Spark最早源于一篇论文 Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, 该论文是由加州大学柏克莱分校的Matei Zaharia等人发表的。论文中提出了一种弹性分布式数据集(即RDD)的概念
  • RDD是一种分布式内存抽象,其使得程序员能够在大规模集群中做内存运算,并且有一定的容错方式。而这也是整个Spark的核心数据结构,Spark整个平台都围绕着RDD进行。
  • Spark与PySpark(1.概述、框架、模块),Spark,spark,大数据,分布式,python

2. Hadoop和Spark的对比

Spark与PySpark(1.概述、框架、模块),Spark,spark,大数据,分布式,python

尽管Spark相对于Hadoop而言具有较大优势,但Spark并不能完全替代Hadoop

  • 在计算层面,Spark相比较MR(MapReduce)有巨大的性能优势,但至今仍有许多计算工具基于MR构架,比如非常成熟的Hive
  • Spark仅做计算,而Hadoop:生态圈不仅有计算(MR)也有存储(HDFS)和资源管理调度(YARN),HDFS和YARN仍是许多大数据体系的核心架构。

3. Spark特点

3.1 运行速度快

Spark处理数据与MapReduce处理数据相比,有如下两个不同点:

  • Spark处理数据时,可以将中间处理结果数据存储到内存中;
  • Spark提供了非常丰富的算子(APi),可以做到复杂任务在一个Spark程序中完成.

3.2 简单易用

3.3 通用性强

Spark与PySpark(1.概述、框架、模块),Spark,spark,大数据,分布式,python

3.4 可以允许运行在很多地方

4. Spark框架模块

4.1 Spark Core

Spark的核心,Spark核心功能均由SparkCore模块提供,是Spark:运行的基础。

SparkCorel以RDD为数据抽象,提供Python、Java、Scala、R语言的API,可以编程进行海量离线数据批处理计算。

4.2 SparkSQL

基于SparkCore之上,提供结构化数据的处理模块。

SparkSQL支持以sQL语言对数据进行处理,SparkSQL本身针对离线计算场景。

同时基于SparkSQL,Spark提供了StructuredStreaming模块,可以以SparkSQL为基础,进行数据的流式计算。

4.3 SparkStreaming

以SparkCore为基础,提供数据的流式计算功能。

4.4 MLlib

以SparkCore为基础,进行机器学习计算,内置了大量的机器学习库和APi算法等。方便用户以分布式计算的模式进行机器学习计算。

4.5 GraphX

以SparkCore为基础,进行图计算,提供了大量的图计算APl,方便用于以分布式计算模式进行图计算。

5. Spark的运行模式

5.1 本地模式(单机) Local运行模式

本地模式就是以一个独立的进程,通过其内部的多个线程来模拟整个Spark运行时的环境

5.2 Standalone模式(集群)

Spark中的各个角色以独立进程的形式存在,并组成Spark:集群环境

5.3 HadoopYARN模式(集群)

Spark中的各个角色运行在YARN的容器内部,并组成Spark集群环境  

5.4 Kubernetes模式(容器集群)

Spark中的各个角色运行在Kubernetesl的容器内部,并组成Spark:集群环境

5.5 云服务模式(运行在云平台上)

6. Spark架构

Spark与PySpark(1.概述、框架、模块),Spark,spark,大数据,分布式,python

左边是YARN框架,右边是Spark框架文章来源地址https://www.toymoban.com/news/detail-788428.html

6.1 在Spark中任务运行层面

  • Driver, 负责对一个任务的运行进行管理(单个任务的管理)
  •  Executor,单个任务的计算(干活的)
  • 正常情况下Executor是干活的角色,不过特殊场景下,(local模式)Driver可以即管又干活

6.2 在Spark中资源层面:

  • Master角色:集群资源管理
  • Worker的角色: 单机资源管理

到了这里,关于Spark与PySpark(1.概述、框架、模块)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 分布式计算框架:Spark、Dask、Ray

    目录 什么是分布式计算 分布式计算哪家强:Spark、Dask、Ray 2 选择正确的框架 2.1 Spark 2.2 Dask 2.3 Ray 分布式计算是一种计算方法,和集中式计算是相对的。 随着计算技术的发展, 有些应用需要非常巨大的计算能力才能完成,如果采用集中式计算,需要耗费相当长的时间来完成

    2024年02月06日
    浏览(43)
  • 云计算实验2 Spark分布式内存计算框架配置及编程案例

    掌握分布式多节点计算平台Spark配置,Spark编程环境IDEA配置,示例程序启动与运行 Linux的虚拟机环境、线上操作视频和实验指导手册 完成Spark开发环境安装、熟悉基本功能和编程方法。 请按照线上操作视频和实验指导手册 ,完成以下实验内容: 实验2-1 Spark安装部署:Standal

    2023年04月13日
    浏览(60)
  • Spark弹性分布式数据集

    1. Spark RDD是什么 RDD(Resilient Distributed Dataset,弹性分布式数据集)是一个不可变的分布式对象集合,是Spark中最基本的数据抽象。在代码中RDD是一个抽象类,代表一个弹性的、不可变、可分区、里面的元素可并行计算的集合。 每个RDD都被分为多个分区,这些分区运行在集群中

    2024年02月13日
    浏览(54)
  • Spark大数据分析与实战笔记(第三章 Spark RDD 弹性分布式数据集-02)

    人生很长,不必慌张。你未长大,我要担当。 传统的MapReduce虽然具有自动容错、平衡负载和可拓展性的优点,但是其最大缺点是采用非循环式的数据流模型,使得在迭代计算式要进行大量的磁盘IO操作。Spark中的RDD可以很好的解决这一缺点。 RDD是Spark提供的最重要的抽象概念

    2024年02月22日
    浏览(83)
  • 大数据学习06-Spark分布式集群部署

    配置好IP vim /etc/sysconfig/network-scripts/ifcfg-ens33 修改主机名 vi /etc/hostname 做好IP映射 vim /etc/hosts 关闭防火墙 systemctl status firewalld systemctl stop firewalld systemctl disable firewalld 配置SSH免密登录 ssh-keygen -t rsa 下载Scala安装包 配置环境变量 添加如下配置 使环境生效 验证 Spark官网 解压 上

    2024年02月10日
    浏览(66)
  • 大数据开发之Spark(RDD弹性分布式数据集)

    rdd(resilient distributed dataset)叫做弹性分布式数据集,是spark中最基本的数据抽象。 代码中是一个抽象类,它代表一个弹性的、不可变、可分区、里面的元素可并行计算的集合。 1.1.1 rdd类比工厂生产 1.1.2 wordcount工作流程 1、一组分区(partition),即是数据集的基本组成单位,

    2024年01月24日
    浏览(65)
  • 大数据课程K2——Spark的RDD弹性分布式数据集

    文章作者邮箱:yugongshiye@sina.cn              地址:广东惠州 ⚪ 了解Spark的RDD结构; ⚪ 掌握Spark的RDD操作方法; ⚪ 掌握Spark的RDD常用变换方法、常用执行方法; 初学Spark时,把RDD看做是一个集合类型(类似于Array或List),用于存储数据和操作数据,但RDD和普通集合的区别

    2024年02月12日
    浏览(50)
  • 云计算与大数据第16章 分布式内存计算平台Spark习题

    1、Spark是Hadoop生态(  B  )组件的替代方案。 A. Hadoop     B. MapReduce        C. Yarn             D.HDFS 2、以下(  D  )不是Spark的主要组件。 A. Driver      B. SparkContext       C. ClusterManager D. ResourceManager 3、Spark中的Executor是(  A  )。 A.执行器      B.主节

    2024年02月14日
    浏览(104)
  • 分布式计算中的大数据处理:Hadoop与Spark的性能优化

    大数据处理是现代计算机科学的一个重要领域,它涉及到处理海量数据的技术和方法。随着互联网的发展,数据的规模不断增长,传统的计算方法已经无法满足需求。因此,分布式计算技术逐渐成为了主流。 Hadoop和Spark是目前最为流行的分布式计算框架之一,它们都提供了高

    2024年01月23日
    浏览(54)
  • 数据存储和分布式计算的实际应用:如何使用Spark和Flink进行数据处理和分析

    作为一名人工智能专家,程序员和软件架构师,我经常涉及到数据处理和分析。在当前大数据和云计算的时代,分布式计算已经成为了一个重要的技术方向。Spark和Flink是当前比较流行的分布式计算框架,它们提供了强大的分布式计算和数据分析功能,为数据处理和分析提供了

    2024年02月16日
    浏览(58)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包