基于python+opencv的人脸识别打卡(手把手教你)

这篇具有很好参考价值的文章主要介绍了基于python+opencv的人脸识别打卡(手把手教你)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1 创建环境

conda create -n face python=3.7
conda activate face
pip install opencv-python
pip install pillow
pip install opencv-contrib-python

2 准备工作

2.1新建members.csv文件

文件内容依次是id,First_name,Last_name,如图:
人脸识别打卡代码,人脸识别,python,opencv,python

2.2新建face文件夹

里面存放采集的人脸信息,用于训练

k = cv2.waitKey(1)
        if k == 27:  # 通过esc键退出摄像
            break
        elif count >= 200:  # 得到n个样本后退出摄像(样本越大,精度越高,但采集信息的时间也越长)
            break

2.3注意事项

  1. 脸部识别特征模块

Path路径为你创建环境下的cv2包中haarcascade_frontalface_default.xml对应的地址
只加了opencv中脸部特征,没加眼部识别。(cv2包中还有眼部特征)

Path = r"C:\Users\11931\.conda\envs\face1\Lib\site-packages\cv2\data\haarcascade_frontalface_default.xml"
  1. 调用摄像头
    手机下载一个ip摄像头,将电脑和手机连一个无线网(建议电脑连手机热点),将参数改为手机ip地址。
    人脸识别打卡代码,人脸识别,python,opencv,python

3 源码

import cv2
import os
import numpy as np
from PIL import Image
import datetime
import csv


# 调用笔记本内置摄像头,所以参数为0,如果有其他的摄像头可以调整参数为1,2
Path = r"C:\Users\11931\.conda\envs\face1\Lib\site-packages\cv2\data\haarcascade_frontalface_default.xml"
face_detector = cv2.CascadeClassifier(Path)
names = []
zh_name = []
with open("members.csv", "r", encoding='UTF-8') as csv_file:
    reader = csv.reader(csv_file)
    for item in reader:
        # print(item)
        names.append(item[2])
        zh_name.append(item[1])
    # print (zh_name)


def data_collection():
    cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)
    # cv2.CAP_DSHOW是作为open调用的一部分传递标志,还有许多其它的参数,而这个CAP_DSHOW是微软特有的。
    face_id = input('\n 请输入你的ID:')

    print('\n 数据初始化中,请直视摄像机录入数据....')

    count = 0

    while True:

        # 从摄像头读取图片

        sucess, img = cap.read()

        # 转为灰度图片

        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

        # 检测人脸

        faces = face_detector.detectMultiScale(gray, 1.3, 5)

        for (x, y, w, h) in faces:
            cv2.rectangle(img, (x, y), (x + w, y + w), (255, 0, 0))
            count += 1
            # 保存图像
            cv2.imwrite("11/Member." + str(face_id) + '.' + str(count) + '.jpg', gray[y: y + h, x: x + w])
            cv2.imshow('data collection', img)

        # 保持画面的持续。

        k = cv2.waitKey(1)
        if k == 27:  # 通过esc键退出摄像
            break
        elif count >= 200:  # 得到n个样本后退出摄像
            break
    cap.release()
    cv2.destroyAllWindows()


def face_training():
    # 人脸数据路径
    path = './face'

    recognizer = cv2.face.LBPHFaceRecognizer_create()

    def getImagesAndLabels(path):
        imagePaths = [os.path.join(path, f) for f in os.listdir(path)]  # join函数将多个路径组合后返回
        faceSamples = []
        ids = []
        for imagePath in imagePaths:
            PIL_img = Image.open(imagePath).convert('L')  # convert it to grayscale
            img_numpy = np.array(PIL_img, 'uint8')
            id = int(os.path.split(imagePath)[-1].split(".")[1])
            faces = face_detector.detectMultiScale(img_numpy)
            for (x, y, w, h) in faces:
                faceSamples.append(img_numpy[y:y + h, x: x + w])
                ids.append(id)
        return faceSamples, ids

    print('数据训练中')
    faces, ids = getImagesAndLabels(path)
    recognizer.train(faces, np.array(ids))

    recognizer.write(r'.\trainer.yml')
    # print("{0} faces trained. Exiting Program".format(len(np.unique(ids))))


def face_ientification():
    cap = cv2.VideoCapture(0)
    recognizer = cv2.face.LBPHFaceRecognizer_create()
    recognizer.read('./trainer.yml')
    faceCascade = cv2.CascadeClassifier(Path)
    font = cv2.FONT_HERSHEY_SIMPLEX

    idnum = 0
    global namess
    cam = cv2.VideoCapture(0)
    # 设置大小
    minW = 0.1 * cam.get(3)
    minH = 0.1 * cam.get(4)

    while True:
        ret, img = cam.read()
        # 图像灰度处理
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

        # 将人脸用vector保存各个人脸的坐标、大小(用矩形表示)
        faces = faceCascade.detectMultiScale(
            gray,
            scaleFactor=1.2,  # 表示在前后两次相继的扫描中,搜索窗口的比例系数
            minNeighbors=5,  # 表示构成检测目标的相邻矩形的最小个数(默认为3个)
            minSize=(int(minW), int(minH))  # minSize和maxSize用来限制得到的目标区域的范围
        )

        for (x, y, w, h) in faces:
            cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
            idnum, confidence = recognizer.predict(gray[y:y + h, x:x + w])

            if confidence < 100:
                namess = names[idnum]
                confidence = "{0}%".format(round(100 - confidence))
            else:
                namess = "unknown"
                confidence = "{0}%".format(round(100 - confidence))

            cv2.putText(img, str(namess), (x + 5, y - 5), font, 1, (0, 0, 255), 1)
            cv2.putText(img, str(confidence), (x + 5, y + h - 5), font, 1, (0, 0, 0), 1)  # 输出置信度

        cv2.imshow(u'Identification punch', img)
        k = cv2.waitKey(10)
        if k == 13:
            theTime = datetime.datetime.now()
            # print(zh_name[idnum])
            strings = [str(zh_name[idnum]), str(theTime)]
            print(strings)
            with open("log.csv", "a", newline="") as csvFile:
                writer = csv.writer(csvFile)
                writer.writerow([str(zh_name[idnum]), str(theTime)])
        elif k == 27:
            cap.release()
            cv2.destroyAllWindows()
            break


while True:
    a = int(input("输入1,录入脸部,输入2进行识别打卡:"))
    if a == 1:
        data_collection()
        face_training()
    elif a == 2:
        face_ientification()

4 操作步骤

  1. 录入脸部 (输入id,按照之前建立的csv文件序号操作)

人脸识别打卡代码,人脸识别,python,opencv,python
2. 识别打卡(按下enter会录入信息,esc退出)

人脸识别打卡代码,人脸识别,python,opencv,python
人脸识别打卡代码,人脸识别,python,opencv,python文章来源地址https://www.toymoban.com/news/detail-788555.html

  1. 查看log(按下enter会录入信息,esc退出)
    人脸识别打卡代码,人脸识别,python,opencv,python

到了这里,关于基于python+opencv的人脸识别打卡(手把手教你)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包