Leetcode 416 分割等和子集

这篇具有很好参考价值的文章主要介绍了Leetcode 416 分割等和子集。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

题意理解

        给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

        即将数组的元素分成两组,每组数值=sum(nums)/2

        若能分成这样的两组,则返回true,否则返回false

        本质上,可以将这道题抽象为0-1背包问题,其中nums中的元素是物品,价值=元素大小,重量=元素大小。背包大小m=sum(nums)/2。

        问题就转换成,将nums中的物品任取,放入大小为m的背包,如果此时背包的最大价值也是m,则返回true, 否则返回false。

解题思路

        首先理解题意,将其转换为一个背包问题,使用动态规划的思路来求解。

        动态规划五部曲:

        (1)dp[i][j]或dp[i]的含义

        (2)递推公式:

                dp[i][j]=max(dp[i-1][j],dp[i-1][j-weight[i]]+values[i])或

                dp[j]=max(dp[j],dp[j-weight[i]]+values[i])

        (3)根据题意初始化

        (4)遍历求解:先遍历包还是先遍历物品

        (5)打印——debug

1.动态规划二维dp数组

  1. dp[i][j]表示下标[0,j]的元素任务,放入大小为j的背包,能获得的最大价值
  2. 递推公式dp[i][j]=max(dp[i-1][j],dp[i-1][j-weight[i]]+values[i])
  3. 初始化第一行,第一列。
  4. 遍历:由于二维数组完整保留了两个维度所有信息,所以先遍历背包还是先遍历物品,都是可以的。
 public boolean canPartition(int[] nums) {
        int sum = 0;
        for(int i=0;i< nums.length;i++) sum+=nums[i];
        //不能分为两个相等的正整数
        if(sum%2!=0) return false;
        int target=(int)sum/2;
        int[][] dp=new int[nums.length][target+1];
        for(int i=0;i< nums.length;i++) Arrays.fill(dp[i],-1);
        for(int i=0;i< nums.length;i++) dp[i][0]=0;
        for(int j=0;j<=target;j++){
            if(nums[0]<=j) dp[0][j]=nums[0];
            else dp[0][j]=0;
        }
        for(int i=1;i<nums.length;i++){
            for(int j=1;j<=target;j++){
                if(nums[i]>j){
                    dp[i][j]=dp[i-1][j];
                }else{
                    dp[i][j]=Math.max(dp[i-1][j],dp[i-1][j-nums[i]]+nums[i]);
                }
            }
        }
        return dp[nums.length-1][target]==target?true:false;
    }

Leetcode 416 分割等和子集,刷题训练营,leetcode,算法,动态规划,数据结构

2.一维滚动数组——存储压缩

  1. dp[j]表示装满大小为j的背包所能获得的最大价值。
  2. 递推公式:dp[j]=max(dp[j],dp[j-weight[i]]+values[i])
  3. 初始化:右边的值总是由最左边的值推导而来,而最坐标的值dp[0]表示背包大小为0所能获得的最大价值,所以有dp[0]=0.将所有元素初始化为0
  4. 遍历:由于以为滚动数组是二维dp数组的动态行滚动更新,所以遍历顺序总是先物品后背包。
  5. 注意:为了防止用同层修改过的值修改本行其他值,导致物体重复放置,故采用倒序遍历背包。
public boolean canPartition2(int[] nums) {
        int sum = 0;
        for(int i=0;i< nums.length;i++) sum+=nums[i];
        //不能分为两个相等的正整数
        if(sum%2!=0) return false;
        int target=(int)sum/2;
        int[] dp=new int[target+1];
        Arrays.fill(dp,0);
        for(int i=1;i<nums.length;i++){
            for(int j=target;j>=0;j--){
                if(nums[i]>j){
                    dp[j]=dp[j];
                }else{
                    dp[j]=Math.max(dp[j],dp[j-nums[i]]+nums[i]);
                }
            }
        }
        return dp[target]==target?true:false;
    }

Leetcode 416 分割等和子集,刷题训练营,leetcode,算法,动态规划,数据结构

3.分析

时间复杂度:O(n*target)

空间复杂度

        二维:O(n*target)

        一维:O(target)

n是nums的长度,target是sum(nums)/2的大小文章来源地址https://www.toymoban.com/news/detail-788589.html

到了这里,关于Leetcode 416 分割等和子集的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 01背包问题-递推公式的自我理解与LeetCode 416. 分割等和子集

    学算法好痛苦,完全是对我智力的一次次折磨,看了好多博客,对二维dp数组的理解都是直接搬了代码随想录,搬了随想录又没详细解释,大家都是一眼看懂的吗,好吧() 如果有一个容量为 j 的这样的背包——一个独立的,容量为j的背包。(没把它理解为“剩余容量”) 对于

    2024年02月07日
    浏览(45)
  • 算法训练第四十二天|01背包问题 二维 、01背包问题 一维、416. 分割等和子集

    视频链接:https://www.bilibili.com/video/BV1cg411g7Y6/ 参考:https://programmercarl.com/%E8%83%8C%E5%8C%85%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%8001%E8%83%8C%E5%8C%85-1.html 对于面试的话,其实掌握01背包,和完全背包,就够用了,最多可以再来一个多重背包。 而完全背包又是也是01背包稍作变化而来,即:完全

    2024年02月01日
    浏览(46)
  • [Leetcode] 416. 分割等和子集、1049. 最后一块石头的重量 II、494. 目标和、474. 一和零

    内容:今天复习下dp数组中的背包问题 分割等和子集 - 能否装满 最后一块石头 - 尽可能装满 目标和 - 有多少种方法装 一和零 - 装满背包有多少个物品 416. 分割等和子集 10背包:用/不用;有容量;有价值 dp[j] : 容量为j,最大价值为dp[j]         重量和价值等价 dp[target] == t

    2024年02月16日
    浏览(43)
  • 代码随想录 Day35 动态规划04 01背包问题和完全背包问题 LeetCode T416 分割等和子集

    说到背包问题大家都会想到使用动规的方式来求解,那么为什么用动规呢, dp数组代表什么呢 ? 初始化是什么 , 遍历方式又是什么 ,这篇文章笔者将详细讲解背包问题的经典例题0-1背包问题和完全背包问题的解题方式,希望能帮助到大家 有人一提到背包问题就只会使用动态规划来

    2024年02月06日
    浏览(77)
  • 【力扣】416. 分割等和子集 <动态规划、回溯>

    给你一个 只包含正整数的非空数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。 示例 1: 输入:nums = [1,5,11,5] 输出:true 解释:数组可以分割成 [1, 5, 5] 和 [11] 。 示例 2: 输入:nums = [1,2,3,5] 输出:false 解释:数组不能分割成两个元素和

    2024年02月10日
    浏览(40)
  • 代码随想录day42|背包问题、416. 分割等和子集

     背包问题:    01 背包 二维数组dp[i][j]解法 纯01背包:有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。 每件物品只能用一次 ,求解将哪些物品装入背包里物品价值总和最大。 dp[i][j]:从下标为[0-i]的物品里任意取,放进容量为j的

    2024年04月09日
    浏览(62)
  • 力扣hot100:416.分割等和子集(组合/动态规划/STL问题)

    组合数问题 我们思考一下,如果要把数组分割成两个子集,并且两个子集的元素和相等,是否等价于在数组中寻找若干个数使之和等于所有数的一半?是的! 因此我们可以想到,两种方式: ①回溯的方式找到target,但是回溯是阶乘级别的算法,这里会超时。 ②从前往后遍历

    2024年04月28日
    浏览(38)
  • 【Day42】代码随想录之动态规划0-1背包_416. 分割等和子集

    动态规划理论基础 动规五部曲: 确定dp数组 下标及dp[i] 的含义。 递推公式:比如斐波那契数列 dp[i] = dp[i-1] + dp[i-2]。 初始化dp数组。 确定遍历顺序:从前到后or其他。 推导dp数组。 出现结果不正确: 打印dp日志和自己想的一样:递推公式、初始化或者遍历顺序出错。 打印

    2024年02月20日
    浏览(68)
  • 【十七】【动态规划】DP41 【模板】01背包、416. 分割等和子集、494. 目标和,三道题目深度解析

    动态规划就像是解决问题的一种策略,它可以帮助我们更高效地找到问题的解决方案。这个策略的核心思想就是将问题分解为一系列的小问题,并将每个小问题的解保存起来。这样,当我们需要解决原始问题的时候,我们就可以直接利用已经计算好的小问题的解,而不需要重

    2024年02月03日
    浏览(45)
  • Day42|动态规划part04: 01背包问题,你该了解这些!、滚动数组、416. 分割等和子集

    其他背包,面试几乎不会问,都是竞赛级别的了,leetcode上连多重背包的题目都没有,所以题库也告诉我们,01背包和完全背包就够用了。 而完全背包又是也是01背包稍作变化而来,即:完全背包的物品数量是无限的。 01 背包问题描述 有n件物品和一个最多能背重量为w 的背包

    2024年04月25日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包