现代信号处理——自适应滤波器(LMS自适应滤波器)

这篇具有很好参考价值的文章主要介绍了现代信号处理——自适应滤波器(LMS自适应滤波器)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、自适应滤波简介

维纳滤波存在的问题:

适用于平稳随机信号的最佳滤波,对于非平稳的随机信号,其统计特性(相关函数)是随机的,因此无法估计其相关函数,此时的维纳滤波不适用;

维纳滤波器的参数是固定的,就不可能根据输入信号的变换去自动调整滤波器的参数,此时的滤波器不是最优的。

维纳滤波器必须已知信号和噪声的有关统计特性(输入信号的自相关)。

自适应滤波器,算法

自适应数字滤波器:利用前一时刻已获得的滤波器参数等结果,自动地调节现时刻的滤波器参数,以适应信号与噪声未知的或随时间变化的统计特性,从而实现最优滤波。

自适应滤波器,算法

 自适应滤波器,算法

自适应滤波器,算法

自适应滤波器,算法

自适应滤波器H(z)的系数根据误差信号,通过一定的自适应算法,不断地进行改变,使输出y(n)最接近期望信号d(n)。

实际中,d(n)要根据具体情况进行选取。 

自适应滤波器的特点:

滤波器的参数可以自动地按照某种准则调整到最佳滤波,是一种最佳的时变数字滤波器;

实现时不需要任何关于信号和噪声的先验统计知识;

具有学习和跟踪的性能。

自适应数字滤波器的应用系统:模型识别;通信信道的自适应均衡;雷达与声纳的波束形成;消除心电图中的电源干扰;噪声中信号的检测、跟踪、增强和线性预测等。

自适应滤波器分类:最小均方误差(LMS)自适应滤波器;递归最小二乘(RLS)自适应滤波器。

二、LMS自适应滤波器的基本原理

自适应滤波器,算法

自适应滤波器,算法

 自适应滤波器,算法

自适应滤波器,算法

利用LMS准则求最佳权系数和最小均方误差

 自适应滤波器,算法

自适应滤波器,算法

 自适应滤波器,算法

 自适应滤波器,算法

 自适应滤波器,算法

自适应滤波器,算法

当滤波器的单位脉冲响应取最佳值时,其误差信号和输入信号是正交的。 

 自适应滤波器,算法

 自适应滤波器,算法

 三、最陡下降算法

自适应滤波器,算法

自适应滤波器,算法

自适应滤波器,算法

 自适应滤波器,算法

四、Widrow-Hoff LMS算法 

 自适应滤波器,算法

 自适应滤波器,算法

自适应滤波器,算法

LMS算法的权值计算 

LMS(Least Mean Square)算法的梯度估计值用一条样本曲线进行计算,公式如下:

 自适应滤波器,算法

 自适应滤波器,算法

自适应滤波器,算法

权系数也是在理想情况下的权轨迹附近随机变化的

搜索方向为瞬时梯度负方向,不能保证每一步更新都使目标函数值减小,但总趋势使目标函数值减小。

五、LMS算法的收敛性质

自适应滤波器,算法

 自适应滤波器,算法

 自适应滤波器,算法

  • 优点:算法简单,易于实现,算法复杂度低(LMS<RLS),能够抑制旁瓣效应
  • 缺点
    • 收敛速率较慢(LMS<RLS),因为LMS滤波器系数更新是逐点的(每来一个新的x(n)和d(n),滤波器系数就更新一次),每一次采样点梯度的估计对于真实梯度会存在误差,导致滤波器系数的每次更新不会严格按照真实梯度方向更新,而是有一定的偏差
    • 跟踪性能较差,并且随着滤波器阶数(步长参数)升高,系统的稳定性下降
    • LMS要求不同时刻的输入向量x(n)线性无关——LMS 的独立性假设。如果输入信号存在相关性,会导致前一次迭代产生的梯度噪声传播到下一次迭代,造成误差的反复传播,收敛速度变慢,跟踪性能变差。

所以,理论上,LMS 算法对白噪声的效果最好。为了降低输入信号的相关性,出现了一类“解相关LMS”算法,这里就不展开讲述了。

参考视频:

https://www.bilibili.com/video/BV1wS4y1D7ng?p=9&vd_source=77c874a500ef21df351103560dada737文章来源地址https://www.toymoban.com/news/detail-788639.html

到了这里,关于现代信号处理——自适应滤波器(LMS自适应滤波器)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • FPGA信号处理系列文章——深入浅出理解多相滤波器

    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 多相滤波是,按照相位均匀划分把数字滤波器的系统函数H(z)分解成若干个具有不同相位的组,形成多个分支,在每个分支上实现滤波。 采用多相滤波结构,可利用多个阶数较低的滤波来实现原本阶数较

    2024年02月05日
    浏览(76)
  • FPGA 的数字信号处理:Verilog 实现简单的 FIR 滤波器

    该项目介绍了如何使用 Verilog 实现具有预生成系数的简单 FIR 滤波器。 不起眼的 FIR 滤波器是 FPGA 数字信号处理中最基本的模块之一,因此了解如何将具有给定抽头数及其相应系数值的基本模块组合在一起非常重要。因此,在这个关于 FPGA 上 DSP 基础实用入门的教程中,将从一

    2024年02月09日
    浏览(49)
  • 数字信号处理-10-并行FIR滤波器MATLAB与FPGA实现

    本文介绍了设计滤波器的FPGA实现步骤,并结合杜勇老师的书籍中的并行FIR滤波器部分进行一步步实现硬件设计,对书中的架构做了复现以及解读,并进行了仿真验证。 FIR滤波器的结构形式时,介绍了直接型、级联型、频率取样型和快速卷积型4种。在FPGA实现时,最常用的是最

    2023年04月09日
    浏览(49)
  • 【Python 算法】信号处理通过陷波滤波器准确去除工频干扰

    对于一个信号来说通常汇入工频噪声往往是因为交流电产生的电泳,影响了我们信号采集导致信号上存在工频干扰。 那么matlab去除工频干扰可以通过陷波滤波器实现。 在python中通常使用scipy.signal实现信号的处理。 Scipy的信号处理模块(scipy.signal)来创建自定义的陷波滤波器

    2024年02月08日
    浏览(49)
  • 数字信号处理第四次试验:IIR数字滤波器设计及软件实现

    为了帮助同学们完成痛苦的实验课程设计,本作者将其作出的实验结果及代码贴至CSDN中,供同学们学习参考。如有不足或描述不完善之处,敬请各位指出,欢迎各位的斧正! (1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法; (2)学会调用MATLAB信号处理工具箱中滤

    2024年02月08日
    浏览(44)
  • 数字信号处理音频FIR去噪滤波器(基于MATLAB GUI的开发)

    利用MATLAB GUI设计平台,用窗函数法设计FIR数字滤波器,对所给出的含有噪声的声音信号进行数字滤波处理,得到降噪的声音信号,进行时域频域分析,同时分析不同窗函数的效果。将文件解压至一个目录下,运行m文件即可使用。 读取.wav音频文件函数 :audioread();(老版

    2024年02月08日
    浏览(56)
  • 数字信号处理翻转课堂笔记17——窗函数法设计FIR滤波器及matlab实现

    对应教材:《数字信号处理(第五版)》西安电子科技大学出版社,丁玉美、高西全著 (1)窗函数法设计FIR线性相位滤波器的原理; (2)加窗效应:加窗对滤波器特性的影响(难点); (3)典型窗函数及其主要特性和参数(重点); (4)窗函数法设计FIR滤波器的步骤(

    2024年01月16日
    浏览(53)
  • 【非欧几里得域信号的信号处理】使用经典信号处理和图信号处理在一维和二维欧几里得域信号上应用低通滤波器研究(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 2.1 算例1 2.2 算例2 2.3 算例3  2.4 算例4 

    2024年02月13日
    浏览(71)
  • 数字信号处理|Matlab设计巴特沃斯低通滤波器(冲激响应不变法和双线性变换法)

    2.1频响图 系统函数 H 是一个复数,其图谱分为:幅度谱、相位谱 幅度谱 x轴:模拟频率f(数字频率w转化来)【 单位:赫兹Hz 】 y轴:|H1|幅度【一般用:20 * log10|H1|】【 单位:分贝dB 】  相位谱 x轴:模拟频率f(数字频率w转化来)【 单位:赫兹Hz 】 y轴:H1 的相位 2.2 各个频

    2023年04月08日
    浏览(42)
  • 【阵列信号处理】空间匹配滤波器、锥形/非锥形最佳波束成形器、样本矩阵反演 (SMI) 研究(Matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 空间匹配

    2024年02月14日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包