Unity中Shader的BRDF解析(三)

这篇具有很好参考价值的文章主要介绍了Unity中Shader的BRDF解析(三)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


前言

在上篇文章中,我们解析了BRDF的漫反射项,这篇文章我们继续解析BRDF中的镜面反射

  • Unity中Shader的BRDF解析(二)

一、BRDF中的镜面反射项

Unity中Shader的BRDF解析(三),Unity,unity,游戏引擎
Unity中Shader的BRDF解析(三),Unity,unity,游戏引擎

  • 我们返回 specular ,看一下高光效果:

return fixed4(specular,1);

Unity中Shader的BRDF解析(三),Unity,unity,游戏引擎


二、分别解析每一个参数

Unity中Shader的BRDF解析(三),Unity,unity,游戏引擎

1、D、G函数:speclarTerm

//镜面反射中的DV项的计算
//最后乘以PI的原因是因为计算 漫反射 时,等式右边没有除以PI。
//导致算出的结果,等效于分母中多乘了一个PI,所以需要在计算公式时,乘以一个PI,消除PI
float specularTerm = V*D * UNITY_PI; // Torrance-Sparrow model, Fresnel is applied later

Unity中Shader的BRDF解析(三),Unity,unity,游戏引擎

  • roughness:学术粗糙度 = 感性粗糙度 * 感性粗糙度

//声明一个学术上的粗糙度 = perceptualRoughness * perceptualRoughness
float roughness = PerceptualRoughnessToRoughness(perceptualRoughness);

  • UNITY_BRDF_GGX:默认为1

#ifndef UNITY_BRDF_GGX
#define UNITY_BRDF_GGX 1
#endif

  • D函数:法线分布函数

作用:使只有 视线向量 和 光方向向量 的半角向量 与 微平面法线重合时,才将光线 l 进行反射

Unity中Shader的BRDF解析(三),Unity,unity,游戏引擎

  • 公式推导:(float D = GGXTerm (nh, roughness);)

Unity中Shader的BRDF解析(三),Unity,unity,游戏引擎

这里变化公式的原因:为了节省性能
最后,把分母的1替换为 1e-7f的原因:保证分母不为0

inline float GGXTerm (float NdotH, float roughness)
{
float a2 = roughness * roughness;
float d = (NdotH * a2 - NdotH) * NdotH + 1.0f; // 2 mad
return UNITY_INV_PI * a2 / (d * d + 1e-7f); // This function is not intended to be running on Mobile,
// therefore epsilon is smaller than what can be represented by half
}

  • V函数:

Unity中Shader的BRDF解析(三),Unity,unity,游戏引擎

float V = SmithJointGGXVisibilityTerm1 (nl, nv, roughness);


//V函数的计算:
   // Ref: http://jcgt.org/published/0003/02/03/paper.pdf
   inline float SmithJointGGXVisibilityTerm1 (float NdotL, float NdotV, float roughness)
   {
       #if 0
       // Original formulation:
       //  lambda_v    = (-1 + sqrt(a2 * (1 - NdotL2) / NdotL2 + 1)) * 0.5f;
       //  lambda_l    = (-1 + sqrt(a2 * (1 - NdotV2) / NdotV2 + 1)) * 0.5f;
       //  G           = 1 / (1 + lambda_v + lambda_l);

       // Reorder code to be more optimal
       half a          = roughness;
       half a2         = a * a;

       half lambdaV    = NdotL * sqrt((-NdotV * a2 + NdotV) * NdotV + a2);
       half lambdaL    = NdotV * sqrt((-NdotL * a2 + NdotL) * NdotL + a2);

       // Simplify visibility term: (2.0f * NdotL * NdotV) /  ((4.0f * NdotL * NdotV) * (lambda_v + lambda_l + 1e-5f));
       return 0.5f / (lambdaV + lambdaL + 1e-5f);  // This function is not intended to be running on Mobile,
       // therefore epsilon is smaller than can be represented by half
       #else
       //上面公式的一个近似实现(简化平方根,数学上不太精确,但是效果比较接近,性能好)
       // Approximation of the above formulation (simplify the sqrt, not mathematically correct but close enough)
       float a = roughness;
       float lambdaV = NdotL * (NdotV * (1 - a) + a);
       float lambdaL = NdotV * (NdotL * (1 - a) + a);

       #if defined(SHADER_API_SWITCH)
       return 0.5f / (lambdaV + lambdaL + UNITY_HALF_MIN);
       #else
       return 0.5f / (lambdaV + lambdaL + 1e-5f);
       #endif

       #endif
   }

Unity中Shader的BRDF解析(三),Unity,unity,游戏引擎

2、其他中间步骤

  • 如果颜色空间为Gamma空间:

//如果颜色空间为Gamma空间:
# ifdef UNITY_COLORSPACE_GAMMA
specularTerm = sqrt(max(1e-4h, specularTerm));
# endif

  • 材质上的镜面高光开关

//材质上的镜面高光开关
#if defined(_SPECULARHIGHLIGHTS_OFF)
specularTerm = 0.0;
#endif

  • any(a)函数:

any (a)
如果a=0或者a中的所有分量为0,则返回0(false);否则返回1(true).
bool any(bool4 a)
{
return a.x || a.y || a.z || a.w;
}

我们在片元着色器中,输出测试一下:

return any(0);

return any(fixed4(0,0,0,0));

Unity中Shader的BRDF解析(三),Unity,unity,游戏引擎

return any(1);

return any(fixed4(0,0,1,0));

Unity中Shader的BRDF解析(三),Unity,unity,游戏引擎

  • 当我们的 metallic = 1时,并且Albedo为纯黑色的情况,不希望有金属反射效果

// To provide true Lambert lighting, we need to be able to kill specular completely.
specularTerm *= any(specColor) ? 1.0 : 0.0;

  • 这句话可能Unity有自己的考虑:

specularTerm *= any(specColor) ? 1.0 : 0.0;
等效于
specularTerm *= any(specColor);

3、光照颜色

光照颜色就是单纯的乘以光照颜色

4、F函数(菲涅尔函数) :FresnelTerm

Unity中Shader的BRDF解析(三),Unity,unity,游戏引擎

FresnelTerm1 (specColor, lh);

//F函数的计算:(菲涅尔效果)
inline half3 FresnelTerm1 (half3 F0, half cosA)
{
half t = Pow5 (1 - cosA); // ala Schlick interpoliation
return F0 + (1-F0) * t;
}

F0代表 视线方向 与 法线方向呈 0°夹角
F90代表 视线方向 与 法线方向呈 90°夹角

  • 参数:lh

公式中使用的是 VdotH。但是,这里传入的是 LdotH 的原因:
视线单位向量 dot 半角单位向量的点积 = 光方向单位向量 dot 半角单位向量的点积
因为,夹角是一样的。所以节省性能,使用 LdotH 代替 VdotH

  • 参数:specColor

由金属度决定的文章来源地址https://www.toymoban.com/news/detail-788988.html

IBL在下篇文章中继续解析


三、最终代码

.cginc文件:

#ifndef MYPHYSICALLYBASERENDERING_INCLUDE
    #define MYPHYSICALLYBASERENDERING_INCLUDE

    //Standard的漫反射和镜面反射计算↓

    //F函数的计算:(菲涅尔效果)
    inline half3 FresnelTerm1 (half3 F0, half cosA)
    {
        half t = Pow5 (1 - cosA);   // ala Schlick interpoliation
        return F0 + (1-F0) * t;
    }

    //V函数的计算:
    // Ref: http://jcgt.org/published/0003/02/03/paper.pdf
    inline float SmithJointGGXVisibilityTerm1 (float NdotL, float NdotV, float roughness)
    {
        #if 0
        // Original formulation:
        //  lambda_v    = (-1 + sqrt(a2 * (1 - NdotL2) / NdotL2 + 1)) * 0.5f;
        //  lambda_l    = (-1 + sqrt(a2 * (1 - NdotV2) / NdotV2 + 1)) * 0.5f;
        //  G           = 1 / (1 + lambda_v + lambda_l);

        // Reorder code to be more optimal
        half a          = roughness;
        half a2         = a * a;

        half lambdaV    = NdotL * sqrt((-NdotV * a2 + NdotV) * NdotV + a2);
        half lambdaL    = NdotV * sqrt((-NdotL * a2 + NdotL) * NdotL + a2);

        // Simplify visibility term: (2.0f * NdotL * NdotV) /  ((4.0f * NdotL * NdotV) * (lambda_v + lambda_l + 1e-5f));
        return 0.5f / (lambdaV + lambdaL + 1e-5f);  // This function is not intended to be running on Mobile,
        // therefore epsilon is smaller than can be represented by half
        #else
        //上面公式的一个近似实现(简化平方根,数学上不太精确,但是效果比较接近,性能好)
        // Approximation of the above formulation (simplify the sqrt, not mathematically correct but close enough)
        float a = roughness;
        float lambdaV = NdotL * (NdotV * (1 - a) + a);
        float lambdaL = NdotV * (NdotL * (1 - a) + a);

        #if defined(SHADER_API_SWITCH)
        return 0.5f / (lambdaV + lambdaL + UNITY_HALF_MIN);
        #else
        return 0.5f / (lambdaV + lambdaL + 1e-5f);
        #endif

        #endif
    }
    //D函数的计算:
    inline float GGXTerm1 (float NdotH, float roughness)
    {
        float a2 = roughness * roughness;
        float d = (NdotH * a2 - NdotH) * NdotH + 1.0f; // 2 mad
        return UNITY_INV_PI * a2 / (d * d + 1e-7f); // This function is not intended to be running on Mobile,
        // therefore epsilon is smaller than what can be represented by half
    }

    //为了保证分母不为0,而使用的一种安全的归一化
    inline float3 Unity_SafeNormalize1(float3 inVec)
    {
        //normalize(v) = rsqrt(dot(v,v)) * v;
        float dp3 = max(0.001f, dot(inVec, inVec));
        return inVec * rsqrt(dp3);
    }
    //迪士尼的漫反射计算
    half DisneyDiffuse1(half NdotV, half NdotL, half LdotH, half perceptualRoughness)
    {
        half fd90 = 0.5 + 2 * LdotH * LdotH * perceptualRoughness;
        // Two schlick fresnel term
        half lightScatter   = (1 + (fd90 - 1) * Pow5(1 - NdotL));
        half viewScatter    = (1 + (fd90 - 1) * Pow5(1 - NdotV));

        return lightScatter * viewScatter;
    }
    // Main Physically Based BRDF
    // Derived from Disney work and based on Torrance-Sparrow micro-facet model
    //
    //   BRDF = kD / pi + kS * (D * V * F) / 4
    //   I = BRDF * NdotL
    //
    // * NDF (depending on UNITY_BRDF_GGX):
    //  a) Normalized BlinnPhong
    //  b) GGX
    // * Smith for Visiblity term
    // * Schlick approximation for Fresnel
    half4 BRDF1_Unity_PBS1 (half3 diffColor, half3 specColor, half oneMinusReflectivity, half smoothness,
        float3 normal, float3 viewDir,
        UnityLight light, UnityIndirect gi)
    {
        //感性的粗糙的 = 1 - smoothness
        float perceptualRoughness = SmoothnessToPerceptualRoughness (smoothness);
        //半角向量(一般用 H 表示): H = 光线向量 + 视线向量(此处的 光线向量 和 视线向量 为单位向量,根据向量相加的四边形法则得出半角向量)
        float3 halfDir = Unity_SafeNormalize1 (float3(light.dir) + viewDir);
        
    //法线 与 视线的点积在可见像素上不应该出现负值,但是他有可能发生在 投影 与 法线 映射 时
    //所以,可以通过某些方式来修正,但是会产生额外的指令运算
    //替代方案采用abs的形式,同样可以工作只是正确性少一些    
    // NdotV should not be negative for visible pixels, but it can happen due to perspective projection and normal mapping
    // In this case normal should be modified to become valid (i.e facing camera) and not cause weird artifacts.
    // but this operation adds few ALU and users may not want it. Alternative is to simply take the abs of NdotV (less correct but works too).
    // Following define allow to control this. Set it to 0 if ALU is critical on your platform.
    // This correction is interesting for GGX with SmithJoint visibility function because artifacts are more visible in this case due to highlight edge of rough surface
    // Edit: Disable this code by default for now as it is not compatible with two sided lighting used in SpeedTree.
    #define UNITY_HANDLE_CORRECTLY_NEGATIVE_NDOTV 0

    #if UNITY_HANDLE_CORRECTLY_NEGATIVE_NDOTV
        // The amount we shift the normal toward the view vector is defined by the dot product.
        half shiftAmount = dot(normal, viewDir);
        normal = shiftAmount < 0.0f ? normal + viewDir * (-shiftAmount + 1e-5f) : normal;
        // A re-normalization should be applied here but as the shift is small we don't do it to save ALU.
        //normal = normalize(normal);

        float nv = saturate(dot(normal, viewDir)); // TODO: this saturate should no be necessary here
    #else
        half nv = abs(dot(normal, viewDir));    // This abs allow to limit artifact
    #endif

        //其他向量之间的点积
        float nl = saturate(dot(normal, light.dir));//法线 点积 光线
        float nh = saturate(dot(normal, halfDir));//法线 点积 半角
        half lv = saturate(dot(light.dir, viewDir));//光线 点积 视线
        half lh = saturate(dot(light.dir, halfDir));//光线 点积 半角

        // Diffuse term
        //迪士尼原则的漫反射
        half diffuseTerm = DisneyDiffuse1(nv, nl, lh, perceptualRoughness) * nl;

        // Specular term
        // HACK: theoretically we should divide diffuseTerm by Pi and not multiply specularTerm!
        // 理论上漫反射项中应该除以 PI,但是由于以下两个原因没有这样做
        // BUT 1) that will make shader look significantly darker than Legacy ones
        //原因一:这样会导致最终效果偏暗
        // and 2) on engine side "Non-important" lights have to be divided by Pi too in cases when they are injected into ambient SH
        //原因二:当引擎光照为 不重要光照 时,进行球谐光照计算,会再除以一个 PI。所以,在Unity计算迪士尼漫反射时,不除以PI

        //声明一个学术上的粗糙度 = perceptualRoughness * perceptualRoughness
        float roughness = PerceptualRoughnessToRoughness(perceptualRoughness);

        //GGX模型拥有比较好的效果,默认使用这个模型(并且,UNITY_BRDF_GGX在定义时,默认为 1)
    #if UNITY_BRDF_GGX
        // GGX with roughtness to 0 would mean no specular at all, using max(roughness, 0.002) here to match HDrenderloop roughtness remapping.
        //使用max来限定 roughtness 最小等于0 的原因:当 roughtness 为0时,结果会直接为0,导致效果丢失
        roughness = max(roughness, 0.002);
        float V = SmithJointGGXVisibilityTerm1 (nl, nv, roughness);
        float D = GGXTerm1 (nh, roughness);
    #else
        // Legacy
        half V = SmithBeckmannVisibilityTerm1 (nl, nv, roughness);
        half D = NDFBlinnPhongNormalizedTerm1 (nh, PerceptualRoughnessToSpecPower(perceptualRoughness));
    #endif

        //镜面反射中的DV项的计算
        //最后乘以PI的原因是因为上面计算漫反射时,等式右边没有除以PI。
        //导致算出的结果,等效于分母中多乘了一个PI,所以需要在计算公式时,乘以一个PI,消除PI
        float specularTerm = V*D * UNITY_PI; // Torrance-Sparrow model, Fresnel is applied later

    //如果颜色空间为Gamma空间:    
    #   ifdef UNITY_COLORSPACE_GAMMA
            specularTerm = sqrt(max(1e-4h, specularTerm));
    #   endif

        // specularTerm * nl can be NaN on Metal in some cases, use max() to make sure it's a sane value
        specularTerm = max(0, specularTerm * nl);

    //材质上的镜面高光开关    
    #if defined(_SPECULARHIGHLIGHTS_OFF)
        specularTerm = 0.0;
    #endif

        // surfaceReduction = Int D(NdotH) * NdotH * Id(NdotL>0) dH = 1/(roughness^2+1)
        half surfaceReduction;
    #   ifdef UNITY_COLORSPACE_GAMMA
            surfaceReduction = 1.0-0.28*roughness*perceptualRoughness;      // 1-0.28*x^3 as approximation for (1/(x^4+1))^(1/2.2) on the domain [0;1]
    #   else
            surfaceReduction = 1.0 / (roughness*roughness + 1.0);           // fade \in [0.5;1]
    #   endif

        // To provide true Lambert lighting, we need to be able to kill specular completely.
        // 当我们的 metallic = 1时,并且Albedo为纯黑色的情况,不希望有金属反射效果
        specularTerm *= any(specColor) ? 1.0 : 0.0;

        half grazingTerm = saturate(smoothness + (1-oneMinusReflectivity));

        //漫反射颜色 = 贴图 * (gi漫反射 + 灯光颜色 * 迪士尼漫反射)
        half3 diffuse = diffColor * (gi.diffuse + light.color * diffuseTerm);
        
        //镜面反射 DFG / 4cos(θl)cos(θv)
        //speclarTerm : D G 函数
        //light.color : 光照颜色
        //FresnelTerm (specColor, lh) : F 函数
        half3 specular = specularTerm * light.color * FresnelTerm1 (specColor, lh);
        
        //IBL
        half3 ibl = surfaceReduction * gi.specular * FresnelLerp (specColor, grazingTerm, nv);
        
        half3 color = diffuse + specular + ibl;
        
        return half4(color, 1);
    }

    // Based on Minimalist CookTorrance BRDF
    // Implementation is slightly different from original derivation: http://www.thetenthplanet.de/archives/255
    //
    // * NDF (depending on UNITY_BRDF_GGX):
    //  a) BlinnPhong
    //  b) [Modified] GGX
    // * Modified Kelemen and Szirmay-​Kalos for Visibility term
    // * Fresnel approximated with 1/LdotH
    half4 BRDF2_Unity_PBS1 (half3 diffColor, half3 specColor, half oneMinusReflectivity, half smoothness,
        float3 normal, float3 viewDir,
        UnityLight light, UnityIndirect gi)
    {
        float3 halfDir = Unity_SafeNormalize (float3(light.dir) + viewDir);

        half nl = saturate(dot(normal, light.dir));
        float nh = saturate(dot(normal, halfDir));
        half nv = saturate(dot(normal, viewDir));
        float lh = saturate(dot(light.dir, halfDir));

        // Specular term
        half perceptualRoughness = SmoothnessToPerceptualRoughness (smoothness);
        half roughness = PerceptualRoughnessToRoughness(perceptualRoughness);

    #if UNITY_BRDF_GGX

        // GGX Distribution multiplied by combined approximation of Visibility and Fresnel
        // See "Optimizing PBR for Mobile" from Siggraph 2015 moving mobile graphics course
        // https://community.arm.com/events/1155
        float a = roughness;
        float a2 = a*a;

        float d = nh * nh * (a2 - 1.f) + 1.00001f;
    #ifdef UNITY_COLORSPACE_GAMMA
        // Tighter approximation for Gamma only rendering mode!
        // DVF = sqrt(DVF);
        // DVF = (a * sqrt(.25)) / (max(sqrt(0.1), lh)*sqrt(roughness + .5) * d);
        float specularTerm = a / (max(0.32f, lh) * (1.5f + roughness) * d);
    #else
        float specularTerm = a2 / (max(0.1f, lh*lh) * (roughness + 0.5f) * (d * d) * 4);
    #endif

        // on mobiles (where half actually means something) denominator have risk of overflow
        // clamp below was added specifically to "fix" that, but dx compiler (we convert bytecode to metal/gles)
        // sees that specularTerm have only non-negative terms, so it skips max(0,..) in clamp (leaving only min(100,...))
    #if defined (SHADER_API_MOBILE)
        specularTerm = specularTerm - 1e-4f;
    #endif

    #else

        // Legacy
        half specularPower = PerceptualRoughnessToSpecPower(perceptualRoughness);
        // Modified with approximate Visibility function that takes roughness into account
        // Original ((n+1)*N.H^n) / (8*Pi * L.H^3) didn't take into account roughness
        // and produced extremely bright specular at grazing angles

        half invV = lh * lh * smoothness + perceptualRoughness * perceptualRoughness; // approx ModifiedKelemenVisibilityTerm(lh, perceptualRoughness);
        half invF = lh;

        half specularTerm = ((specularPower + 1) * pow (nh, specularPower)) / (8 * invV * invF + 1e-4h);

    #ifdef UNITY_COLORSPACE_GAMMA
        specularTerm = sqrt(max(1e-4f, specularTerm));
    #endif

    #endif

    #if defined (SHADER_API_MOBILE)
        specularTerm = clamp(specularTerm, 0.0, 100.0); // Prevent FP16 overflow on mobiles
    #endif
    #if defined(_SPECULARHIGHLIGHTS_OFF)
        specularTerm = 0.0;
    #endif

        // surfaceReduction = Int D(NdotH) * NdotH * Id(NdotL>0) dH = 1/(realRoughness^2+1)

        // 1-0.28*x^3 as approximation for (1/(x^4+1))^(1/2.2) on the domain [0;1]
        // 1-x^3*(0.6-0.08*x)   approximation for 1/(x^4+1)
    #ifdef UNITY_COLORSPACE_GAMMA
        half surfaceReduction = 0.28;
    #else
        half surfaceReduction = (0.6-0.08*perceptualRoughness);
    #endif

        surfaceReduction = 1.0 - roughness*perceptualRoughness*surfaceReduction;

        half grazingTerm = saturate(smoothness + (1-oneMinusReflectivity));
        half3 color =   (diffColor + specularTerm * specColor) * light.color * nl
                        + gi.diffuse * diffColor
                        + surfaceReduction * gi.specular * FresnelLerpFast (specColor, grazingTerm, nv);

        return half4(color, 1);
    }

    sampler2D_float unity_NHxRoughness1;
    half3 BRDF3_Direct1(half3 diffColor, half3 specColor, half rlPow4, half smoothness)
    {
        half LUT_RANGE = 16.0; // must match range in NHxRoughness() function in GeneratedTextures.cpp
        // Lookup texture to save instructions
        half specular = tex2D(unity_NHxRoughness1, half2(rlPow4, SmoothnessToPerceptualRoughness(smoothness))).r * LUT_RANGE;
    #if defined(_SPECULARHIGHLIGHTS_OFF)
        specular = 0.0;
    #endif

        return diffColor + specular * specColor;
    }

    half3 BRDF3_Indirect1(half3 diffColor, half3 specColor, UnityIndirect indirect, half grazingTerm, half fresnelTerm)
    {
        half3 c = indirect.diffuse * diffColor;
        c += indirect.specular * lerp (specColor, grazingTerm, fresnelTerm);
        return c;
    }

    // Old school, not microfacet based Modified Normalized Blinn-Phong BRDF
    // Implementation uses Lookup texture for performance
    //
    // * Normalized BlinnPhong in RDF form
    // * Implicit Visibility term
    // * No Fresnel term
    //
    // TODO: specular is too weak in Linear rendering mode
    half4 BRDF3_Unity_PBS1 (half3 diffColor, half3 specColor, half oneMinusReflectivity, half smoothness,
        float3 normal, float3 viewDir,
        UnityLight light, UnityIndirect gi)
    {
        float3 reflDir = reflect (viewDir, normal);

        half nl = saturate(dot(normal, light.dir));
        half nv = saturate(dot(normal, viewDir));

        // Vectorize Pow4 to save instructions
        half2 rlPow4AndFresnelTerm = Pow4 (float2(dot(reflDir, light.dir), 1-nv));  // use R.L instead of N.H to save couple of instructions
        half rlPow4 = rlPow4AndFresnelTerm.x; // power exponent must match kHorizontalWarpExp in NHxRoughness() function in GeneratedTextures.cpp
        half fresnelTerm = rlPow4AndFresnelTerm.y;

        half grazingTerm = saturate(smoothness + (1-oneMinusReflectivity));

        
        half3 color = BRDF3_Direct1(diffColor, specColor, rlPow4, smoothness);
        color *= light.color * nl;
        color += BRDF3_Indirect1(diffColor, specColor, gi, grazingTerm, fresnelTerm);

        
        return half4(color, 1);
    }



    // Default BRDF to use:
    //在 ProjectSetting->Graphics->TierSetting中设置
    //StandardShaderQuality = low(UNITY_PBS_USE_BRDF3)
    //StandardShaderQuality = Medium(UNITY_PBS_USE_BRDF2)
    //StandardShaderQuality = High(UNITY_PBS_USE_BRDF1)

    #if !defined (UNITY_BRDF_PBS1) // allow to explicitly override BRDF in custom shader
    // still add safe net for low shader models, otherwise we might end up with shaders failing to compile
    #if SHADER_TARGET < 30 || defined(SHADER_TARGET_SURFACE_ANALYSIS) // only need "something" for surface shader analysis pass; pick the cheap one
        #define UNITY_BRDF_PBS1 BRDF3_Unity_PBS1  //效果最差的BRDF
    #elif defined(UNITY_PBS_USE_BRDF3)
        #define UNITY_BRDF_PBS1 BRDF3_Unity_PBS1
    #elif defined(UNITY_PBS_USE_BRDF2)
        #define UNITY_BRDF_PBS1 BRDF2_Unity_PBS1
    #elif defined(UNITY_PBS_USE_BRDF1)
        #define UNITY_BRDF_PBS1 BRDF1_Unity_PBS1
    #else
        #error something broke in auto-choosing BRDF
    #endif
    #endif

    inline half OneMinusReflectivityFromMetallic1(half metallic)
    {
        // We'll need oneMinusReflectivity, so
        //   1-reflectivity = 1-lerp(dielectricSpec, 1, metallic) = lerp(1-dielectricSpec, 0, metallic)
        // store (1-dielectricSpec) in unity_ColorSpaceDielectricSpec.a, then
        //   1-reflectivity = lerp(alpha, 0, metallic) = alpha + metallic*(0 - alpha) =
        //                  = alpha - metallic * alpha
        half oneMinusDielectricSpec = unity_ColorSpaceDielectricSpec.a;
        return oneMinusDielectricSpec - metallic * oneMinusDielectricSpec;
    }

    inline half3 DiffuseAndSpecularFromMetallic1 (half3 albedo, half metallic, out half3 specColor, out half oneMinusReflectivity)
    {
        //计算镜面高光颜色
        //当metallic为0(即非金属时),返回unity_ColorSpaceDielectricSpec.rgb(0.04)
        //unity_ColorSpaceDielectricSpec.rgb表示的是绝缘体的通用反射颜色
        //迪士尼经大量测量用 0.04 来表示
        //当 metallic = 1 时(金属),返回Albedo,也就是物体本身的颜色
        specColor = lerp (unity_ColorSpaceDielectricSpec.rgb, albedo, metallic);
        oneMinusReflectivity = OneMinusReflectivityFromMetallic1(metallic);
        return albedo * oneMinusReflectivity;
    }

    //s : 物体表面数据信息
    //viewDir : 视线方向
    //gi : 全局光照(GI漫反射 和 GI镜面反射)
    inline half4 LightingStandard1 (SurfaceOutputStandard s, float3 viewDir, UnityGI gi)
    {
        s.Normal = normalize(s.Normal);

        half oneMinusReflectivity;
        //镜面高光颜色
        half3 specColor;
        s.Albedo = DiffuseAndSpecularFromMetallic1 (s.Albedo, s.Metallic, /*out*/ specColor, /*out*/ oneMinusReflectivity);

        // shader relies on pre-multiply alpha-blend (_SrcBlend = One, _DstBlend = OneMinusSrcAlpha)
        // this is necessary to handle transparency in physically correct way - only diffuse component gets affected by alpha
        //当开启半透明模式时,对 Alpha 进行相关计算
        half outputAlpha;
        s.Albedo = PreMultiplyAlpha (s.Albedo, s.Alpha, oneMinusReflectivity, /*out*/ outputAlpha);

        //具体的BRDF计算
        //s.Albedo : 物体表面的基础颜色
        //specColor : 镜面反射颜色
        //oneMinusReflectivity : 漫反射率 = 1 - 镜面反射率
        //s.Smoothness : 物体表面的光滑度
        //s.Normal : 物体表面的法线
        //viewDir : 视线方向
        //gi.light : 直接光信息
        //gi.indirect : GI间接光信息
        half4 c = UNITY_BRDF_PBS1 (s.Albedo, specColor, oneMinusReflectivity, s.Smoothness, s.Normal, viewDir, gi.light, gi.indirect);
        c.a = outputAlpha;
        return c;
    }


    //Standard的GI计算↓
    half3 Unity_GlossyEnvironment1 (UNITY_ARGS_TEXCUBE(tex), half4 hdr, Unity_GlossyEnvironmentData glossIn)
    {
        half perceptualRoughness = glossIn.roughness /* perceptualRoughness */ ;

        // TODO: CAUTION: remap from Morten may work only with offline convolution, see impact with runtime convolution!
        // For now disabled
        #if 0
        float m = PerceptualRoughnessToRoughness(perceptualRoughness); // m is the real roughness parameter
        const float fEps = 1.192092896e-07F;        // smallest such that 1.0+FLT_EPSILON != 1.0  (+1e-4h is NOT good here. is visibly very wrong)
        float n =  (2.0/max(fEps, m*m))-2.0;        // remap to spec power. See eq. 21 in --> https://dl.dropboxusercontent.com/u/55891920/papers/mm_brdf.pdf

        n /= 4;                                     // remap from n_dot_h formulatino to n_dot_r. See section "Pre-convolved Cube Maps vs Path Tracers" --> https://s3.amazonaws.com/docs.knaldtech.com/knald/1.0.0/lys_power_drops.html

        perceptualRoughness = pow( 2/(n+2), 0.25);      // remap back to square root of real roughness (0.25 include both the sqrt root of the conversion and sqrt for going from roughness to perceptualRoughness)
        #else
        // MM: came up with a surprisingly close approximation to what the #if 0'ed out code above does.
        //r = r * (1.7 - 0.7*r)
        //由于粗糙度与反射探针的mip变化不呈现线性正比,所以需要一个公式来改变
        perceptualRoughness = perceptualRoughness*(1.7 - 0.7*perceptualRoughness);
        #endif

        //UNITY_SPECCUBE_LOD_STEPS = 6,表示反射探针的mip级别有 6 档。粗糙度X6得到最终得mip级别
        half mip = perceptualRoughnessToMipmapLevel(perceptualRoughness);
        half3 R = glossIn.reflUVW;
        half4 rgbm = UNITY_SAMPLE_TEXCUBE_LOD(tex, R, mip);

        return DecodeHDR(rgbm, hdr);
    }



    //GI中的镜面反射
    inline half3 UnityGI_IndirectSpecular1(UnityGIInput data, half occlusion, Unity_GlossyEnvironmentData glossIn)
    {
        half3 specular;
        //如果开启了反射探针的Box Projection
        #ifdef UNITY_SPECCUBE_BOX_PROJECTION
        // we will tweak reflUVW in glossIn directly (as we pass it to Unity_GlossyEnvironment twice for probe0 and probe1), so keep original to pass into BoxProjectedCubemapDirection
        half3 originalReflUVW = glossIn.reflUVW;
        glossIn.reflUVW = BoxProjectedCubemapDirection (originalReflUVW, data.worldPos, data.probePosition[0], data.boxMin[0], data.boxMax[0]);
        #endif

        #ifdef _GLOSSYREFLECTIONS_OFF
        specular = unity_IndirectSpecColor.rgb;
        #else
        half3 env0 = Unity_GlossyEnvironment1 (UNITY_PASS_TEXCUBE(unity_SpecCube0), data.probeHDR[0], glossIn);
        //如果开启了反射探针混合
        #ifdef UNITY_SPECCUBE_BLENDING
        const float kBlendFactor = 0.99999;
        float blendLerp = data.boxMin[0].w;
        UNITY_BRANCH
        if (blendLerp < kBlendFactor)
        {
            #ifdef UNITY_SPECCUBE_BOX_PROJECTION
            glossIn.reflUVW = BoxProjectedCubemapDirection (originalReflUVW, data.worldPos, data.probePosition[1], data.boxMin[1], data.boxMax[1]);
            #endif

            half3 env1 = Unity_GlossyEnvironment (UNITY_PASS_TEXCUBE_SAMPLER(unity_SpecCube1,unity_SpecCube0), data.probeHDR[1], glossIn);
            specular = lerp(env1, env0, blendLerp);
        }
        else
        {
            specular = env0;
        }
        #else
        specular = env0;
        #endif
        #endif

        return specular * occlusion;
    }


    inline UnityGI UnityGlobalIllumination1 (UnityGIInput data, half occlusion, half3 normalWorld)
    {
        return UnityGI_Base(data, occlusion, normalWorld);
    }
    //GI计算
    inline UnityGI UnityGlobalIllumination1 (UnityGIInput data, half occlusion, half3 normalWorld, Unity_GlossyEnvironmentData glossIn)
    {
        //计算得出GI中的漫反射
        UnityGI o_gi = UnityGI_Base(data, occlusion, normalWorld);
        //计算得出GI中的镜面反射
        o_gi.indirect.specular = UnityGI_IndirectSpecular1(data, occlusion, glossIn);
        return o_gi;
    }
    float SmoothnessToPerceptualRoughness1(float smoothness)
    {
        return (1 - smoothness);
    }
    Unity_GlossyEnvironmentData UnityGlossyEnvironmentSetup1(half Smoothness, half3 worldViewDir, half3 Normal, half3 fresnel0)
    {
        Unity_GlossyEnvironmentData g;
        //粗糙度
        g.roughness /* perceptualRoughness */   = SmoothnessToPerceptualRoughness1(Smoothness);
        //反射球的采样坐标
        g.reflUVW   = reflect(-worldViewDir, Normal);

        return g;
    }

    //PBR光照模型的GI计算
    inline void LightingStandard_GI1(
        SurfaceOutputStandard s,
        UnityGIInput data,
        inout UnityGI gi)
    {
        //如果是延迟渲染PASS并且开启了延迟渲染反射探针的话
        #if defined(UNITY_PASS_DEFERRED) && UNITY_ENABLE_REFLECTION_BUFFERS
        gi = UnityGlobalIllumination1(data, s.Occlusion, s.Normal);
        #else

        //Unity_GlossyEnvironmentData表示GI中的反射准备数据
        Unity_GlossyEnvironmentData g = UnityGlossyEnvironmentSetup1(s.Smoothness, data.worldViewDir, s.Normal,
                                                                    lerp(unity_ColorSpaceDielectricSpec.rgb, s.Albedo,
                                                                         s.Metallic));
        //进行GI计算并返回输出gi
        gi = UnityGlobalIllumination1(data, s.Occlusion, s.Normal, g);
        #endif
    }


#endif

Shader文件:

//Standard材质
Shader "MyShader/P2_2_8"
{
    Properties
    {
        _Color ("Color", Color) = (1,1,1,1)
        _MainTex ("Albedo (RGB)", 2D) = "white" {}
        [NoScaleOffset]_MetallicTex("Metallic(R) Smoothness(G) AO(B)",2D) = "white" {}
        [NoScaleOffset][Normal]_NormalTex("NormalTex",2D) = "bump" {}
        
        _Glossiness ("Smoothness", Range(0,1)) = 0.0
        _Metallic ("Metallic", Range(0,1)) = 0.0
        _AO("AO",Range(0,1)) = 1.0
    }
    SubShader
    {
        Tags
        {
            "RenderType"="Opaque"
        }
        LOD 200

        // ---- forward rendering base pass:
        Pass
        {
            Name "FORWARD"
            Tags
            {
                "LightMode" = "ForwardBase"
            }

            CGPROGRAM
            // compile directives
            #pragma vertex vert
            #pragma fragment frag
            #pragma target 3.0
            #pragma multi_compile_instancing
            #pragma multi_compile_fog
            #pragma multi_compile_fwdbase

            #include "UnityCG.cginc"
            #include "Lighting.cginc"
            #include "UnityPBSLighting.cginc"
            #include "AutoLight.cginc"
            #include "CGInclude/MyPhysicallyBasedRendering.cginc"
                
            sampler2D _MainTex;
            float4 _MainTex_ST;
            half _Glossiness;
            half _Metallic;
            fixed4 _Color;
            sampler2D _MetallicTex;
            half _AO;
            sampler2D _NormalTex;
            
            struct appdata
            {
                float4 vertex : POSITION;
                float4 tangent : TANGENT;
                float3 normal : NORMAL;
                float4 texcoord : TEXCOORD0;
                float4 texcoord1 : TEXCOORD1;
                float4 texcoord2 : TEXCOORD2;
                float4 texcoord3 : TEXCOORD3;
                fixed4 color : COLOR;
                UNITY_VERTEX_INPUT_INSTANCE_ID
            };

            // vertex-to-fragment interpolation data
            // no lightmaps:
            struct v2f
            {
                float4 pos : SV_POSITION;
                float2 uv : TEXCOORD0; // _MainTex
                float3 worldNormal : TEXCOORD1;
                float3 worldPos : TEXCOORD2;
                #if UNITY_SHOULD_SAMPLE_SH
                    half3 sh : TEXCOORD3; // SH
                #endif
                //切线空间需要使用的矩阵
                float3 tSpace0 : TEXCOORD4;
                float3 tSpace1 : TEXCOORD5;
                float3 tSpace2 : TEXCOORD6;

                UNITY_FOG_COORDS(7)
                UNITY_SHADOW_COORDS(8)
            };

            // vertex shader
            v2f vert(appdata v)
            {
                v2f o;

                o.pos = UnityObjectToClipPos(v.vertex);
                o.uv.xy = TRANSFORM_TEX(v.texcoord, _MainTex);
                float3 worldPos = mul(unity_ObjectToWorld, v.vertex).xyz;
                float3 worldNormal = UnityObjectToWorldNormal(v.normal);

                //世界空间下的切线
                half3 worldTangent = UnityObjectToWorldDir(v.tangent);
                //切线方向
                half tangentSign = v.tangent.w * unity_WorldTransformParams.w;
                //世界空间下的副切线
                half3 worldBinormal = cross(worldNormal, worldTangent) * tangentSign;
                //切线矩阵
                o.tSpace0 = float3(worldTangent.x, worldBinormal.x, worldNormal.x);
                o.tSpace1 = float3(worldTangent.y, worldBinormal.y, worldNormal.y);
                o.tSpace2 = float3(worldTangent.z, worldBinormal.z, worldNormal.z);

                o.worldPos.xyz = worldPos;
                o.worldNormal = worldNormal;

                // SH/ambient and vertex lights

                #if UNITY_SHOULD_SAMPLE_SH && !UNITY_SAMPLE_FULL_SH_PER_PIXEL
                    o.sh = 0;
                    // Approximated illumination from non-important point lights
                #ifdef VERTEXLIGHT_ON
                    o.sh += Shade4PointLights (
                    unity_4LightPosX0, unity_4LightPosY0, unity_4LightPosZ0,
                    unity_LightColor[0].rgb, unity_LightColor[1].rgb, unity_LightColor[2].rgb, unity_LightColor[3].rgb,
                    unity_4LightAtten0, worldPos, worldNormal);
                #endif
                    o.sh = ShadeSHPerVertex (worldNormal, o.sh);
                #endif


                UNITY_TRANSFER_LIGHTING(o, v.texcoord1.xy);

                UNITY_TRANSFER_FOG(o, o.pos); // pass fog coordinates to pixel shader

                return o;
            }

            // fragment shader
            fixed4 frag(v2f i) : SV_Target
            {
                UNITY_EXTRACT_FOG(i);
                
                float3 worldPos = i.worldPos.xyz;
                
                float3 worldViewDir = normalize(UnityWorldSpaceViewDir(worldPos));

                SurfaceOutputStandard o;
                UNITY_INITIALIZE_OUTPUT(SurfaceOutputStandard, o);

                fixed4 mainTex = tex2D(_MainTex, i.uv);
                o.Albedo = mainTex.rgb * _Color;

                o.Emission = 0.0;

                fixed4 metallicTex = tex2D(_MetallicTex, i.uv);
                o.Metallic = metallicTex.r * _Metallic;
                o.Smoothness = metallicTex.g * _Glossiness;
                o.Occlusion = metallicTex.b * _AO;
                o.Alpha = 1;


                half3 normalTex = UnpackNormal(tex2D(_NormalTex,i.uv));
                half3 worldNormal = half3(dot(i.tSpace0,normalTex),dot(i.tSpace1,normalTex),dot(i.tSpace2,normalTex));
                o.Normal = worldNormal;


                // compute lighting & shadowing factor
                UNITY_LIGHT_ATTENUATION(atten, i, worldPos)

                // Setup lighting environment
                UnityGI gi;
                UNITY_INITIALIZE_OUTPUT(UnityGI, gi);
                gi.indirect.diffuse = 0;
                gi.indirect.specular = 0;
                gi.light.color = _LightColor0.rgb;
                gi.light.dir = _WorldSpaceLightPos0.xyz;
                // Call GI (lightmaps/SH/reflections) lighting function
                UnityGIInput giInput;
                UNITY_INITIALIZE_OUTPUT(UnityGIInput, giInput);
                giInput.light = gi.light;
                giInput.worldPos = worldPos;
                giInput.worldViewDir = worldViewDir;
                giInput.atten = atten;
                #if defined(LIGHTMAP_ON) || defined(DYNAMICLIGHTMAP_ON)
                    giInput.lightmapUV = IN.lmap;
                #else
                giInput.lightmapUV = 0.0;
                #endif
                #if UNITY_SHOULD_SAMPLE_SH && !UNITY_SAMPLE_FULL_SH_PER_PIXEL
                    giInput.ambient = i.sh;
                #else
                giInput.ambient.rgb = 0.0;
                #endif
                giInput.probeHDR[0] = unity_SpecCube0_HDR;
                giInput.probeHDR[1] = unity_SpecCube1_HDR;
                #if defined(UNITY_SPECCUBE_BLENDING) || defined(UNITY_SPECCUBE_BOX_PROJECTION)
                    giInput.boxMin[0] = unity_SpecCube0_BoxMin; // .w holds lerp value for blending
                #endif
                #ifdef UNITY_SPECCUBE_BOX_PROJECTION
                    giInput.boxMax[0] = unity_SpecCube0_BoxMax;
                    giInput.probePosition[0] = unity_SpecCube0_ProbePosition;
                    giInput.boxMax[1] = unity_SpecCube1_BoxMax;
                    giInput.boxMin[1] = unity_SpecCube1_BoxMin;
                    giInput.probePosition[1] = unity_SpecCube1_ProbePosition;
                #endif
                
                LightingStandard_GI1(o, giInput, gi);
                
                //return fixed4(gi.indirect.specular,1);
                
                // PBS的核心计算
                fixed4 c = LightingStandard1(o, worldViewDir, gi);
                
                UNITY_APPLY_FOG(_unity_fogCoord, c); // apply fog
                UNITY_OPAQUE_ALPHA(c.a); //把c的Alpha置1
                
                return c;
            }
            ENDCG

        }
    }

}

到了这里,关于Unity中Shader的BRDF解析(三)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Unity中Shader指令优化(编译后指令解析)

    我们先读懂Shader编译后代码,才能对Shader进行合理的优化 我们目前先只编译到 D3D 平台 这是编译后的代码(我们来逐步分析):

    2024年02月04日
    浏览(42)
  • Unity中Shader的Standard材质解析(二)

    Unity中Shader的Standard材质解析(二),对 Standard 的 PBR 的 GI 进行解析 Unity中Shader的Standard材质解析(一) #include “CGInclude/MyPhysicallyBasedRendering.cginc” 整理 LightingStandard_GI1(o, giInput, gi); 中的数据 Unity_GlossyEnvironmentData表示GI中的反射准备数据 准备好反射数据后,计算得出GI中的

    2024年02月04日
    浏览(38)
  • 十八、Unity游戏引擎入门

    1、下载     首先需要下载Unity Hub,下载网址:https://unity.com/cn。     然后在其中下载Unity编辑器并安装,可选择最新版本。     接着需要选择适合的开发环境,例如Android Studio或Xcode,以便进行手机游戏开发。在安装完Unity后,需要根据项目需求下载对应的模块和插件,例

    2024年02月16日
    浏览(73)
  • 【游戏开发小技】Unity通过UI全屏图来模糊场景画面(Shader | 模糊 | 滤镜 | Blur)

    一、前言 嗨,大家好,我是新发。 以前我写文章都是很长很长,接下来我会尝试用新的方式来写博客,尽量简短,以实用为主。同时也是作为自己零碎的一些记录,方便查阅。 本文我要说的是在 Unity 中通过 UI 全屏图来模糊场景画面的效果。 二、效果演示 这是没用模糊效果

    2024年02月05日
    浏览(41)
  • Unity 性能优化之Shader分析处理函数ShaderUtil.HasProceduralInstancing: 深入解析与实用案例

    点击封面跳转到Unity国际版下载页面 在Unity中,性能优化是游戏开发过程中非常重要的一环。其中,Shader的优化对于游戏的性能提升起着至关重要的作用。本文将深入解析Unity中的Shader处理函数 ShaderUtil.HasProceduralInstancing ,并提供一些实用案例来展示其用法。 ShaderUtil.HasProce

    2024年02月09日
    浏览(40)
  • 使用团结引擎开发Unity 3D射击游戏

           本案例是初级案例,意在引导想使用unity的初级开发者能较快的入门,体验unity开发的方便性和简易性能。       本次我们将使用团结引擎进行开发,帮助想体验团结引擎的入门开发者进行较快的环境熟悉。      本游戏是一个俯视角度的射击游戏。主角始终位于屏幕

    2024年01月19日
    浏览(72)
  • Unity、UE、Cocos游戏开发引擎的区别

    Unity、Unreal Engine(UE)和Cocos引擎是三个常用的游戏开发引擎,它们在功能和特性上有一些区别。以下是它们之间的主要区别: 编程语言:Unity使用C#作为主要的编程语言,开发者可以使用C#脚本进行游戏逻辑编写。Unreal Engine主要使用C++作为编程语言,但也支持蓝图系统,允许

    2024年02月22日
    浏览(62)
  • Unity vs Godot :哪个游戏引擎更适合你?

    游戏引擎的选择对开发过程和最终产品质量有着重大影响。近年来,Godot和Unity这两款引擎受到广泛关注。本文将从多个维度对两者进行比较,以期为开发者提供正确的选择建议。 Godot和Unity都有各自的优势,没有绝对的好坏之分。Godot开源免费,上手简单,更适合2D和小型游戏

    2024年01月23日
    浏览(94)
  • 30分钟了解所有引擎组件,132个Unity 游戏引擎组件速通!【收藏 == 学会】

    🎬 博客主页:https://xiaoy.blog.csdn.net 🎥 本文由 呆呆敲代码的小Y 原创,首发于 CSDN 🙉 🎄 学习专栏推荐:Unity系统学习专栏 🌲 游戏制作专栏推荐:游戏制作 🌲Unity实战100例专栏推荐:Unity 实战100例 教程 🏅 欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正! 📆 未来很长

    2024年02月11日
    浏览(69)
  • Unity Physics2D 2d物理引擎游戏 笔记

    2d 材质 里面可以设置 摩擦力 和 弹力 Simulated:是否在当前的物理环境中模拟,取消勾选该框类似于Disable Rigidbody,但使用这个参数更加高效,因为Disable会销毁内部产生的GameObject,而取消勾选Simulated只是禁用。 Kinematic 动力学刚体 动力学刚体不受重力和力的影响,而受用户的

    2023年04月24日
    浏览(121)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包