STM32:基本定时器原理和定时程序

这篇具有很好参考价值的文章主要介绍了STM32:基本定时器原理和定时程序。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、初识定时器TIM

        定时器就是计数器,定时器的作用就是设置一个时间,然后时间到后就会通过中断等方式通知STM32执行某些程序。定时器除了可以实现普通的定时功能,还可以实现捕获脉冲宽度,计算PWM占空比,输出PWM波形,编码器计数等。

STM32共11个定时器,2个高级控制定时器TIM1和TIM8,4个通用定时器TIM2~TIM5,两个基本定时器TIM6和TIM7,两个看门狗定时器和一个系统滴答定时器Systick.
高级定时器TIM1和TIM8的时钟由APB1产生,其它六个通用定时器的时钟由APB2产生。它们的最大频率都可以配置成系统时钟的频率。

定时器种类 位数 计数模式 捕获/比较通道 应用场景
通用定时器
TIM2~TIM5
16 向上,向下,双向 4 定时计数,PWM,输入捕获,输出比较
高级定时器
TIM1和TIM8
16 向上,向下,双向 4 在通用的基础上,多了刹车信号输入,死区时间互补输出等工业电机功能
基本定时器
TIM6和TIM7
16 向上,向下,双向 4 定时计数

二、基本定时器

(1)计数功能原理

        在上一期文章提到,时钟树提供稳定频率的方波信号,APB1上的时钟线连接了基本定时器和通用寄存器,APB2上的时钟线连接了高级定时器。

stm32定时程序,嵌入式开发,stm32,嵌入式硬件,单片机,定时器,定时任务

        对于实现计数功能,只需要一个寄存器就可以满足,寄存器只需要读到时钟信号的上升沿数值就加1。假如72MHZ的时钟信号作为输入,当该寄存器数值累加到7.2*10^7,就代表时间过去了1秒。但是寄存器通常只有16bit,最多能计数 65536个数。因此在该寄存器前面还要加一个类似的计数器,当计数满足条件时才往后续电路发送高电平,预分频器就可以充当这个角色,其本质也是一个16bit的计数器。当只需要将其设置为n-1,就可以进行n分频,从0开始计数,一直计数到n-1才会向后续电路发送高电平。预分频器最多可以进行65536分频。因此一个由预分频器和一个计数器组合成的定时器,最多可以计数65536^2次。m个定时器串联,就可以计数65536^(2*m)次。 

stm32定时程序,嵌入式开发,stm32,嵌入式硬件,单片机,定时器,定时任务

(2) 自动重装载寄存器

         自动重装载寄存器,它的作用就是实时监控计数器的值是否与自己的值相同。当计数器的值与自己的值相同时,便将计数器重置为0,并触发定时器更新中断。

stm32定时程序,嵌入式开发,stm32,嵌入式硬件,单片机,定时器,定时任务

(3)影子寄存器

        所谓的影子寄存器就是某个寄存器的拷贝。在上图中工作在一线的预分频器和自动重装载寄存器其实都是自己的影子寄存器。当定时器正在工作时,如果重新设置预分频器值或者重新这是自动重装载寄存器的值,那么只有当计数器和自动重装载寄存器的值一样时才会将新值更新到自身影子寄存器中。也就是给定时器设置的新参数值要等下个计数周期才生效。

        自动重装载寄存器可以根据程序员选择是否开启影子寄存器。如果不开启,那么将自动重装载寄存器数值调小时,可能会错过计数器的值,使计数器一路上到65536才会归0。

三、定时程序

(1)准备工作

为了发送数据进行模拟,需打开USART2用于设置模式为“异步”,在NVIC Settings中打开中断,打上√,在DMA Settings,打开DMA传输功能,添加传输通道。

stm32定时程序,嵌入式开发,stm32,嵌入式硬件,单片机,定时器,定时任务

为提高计数精度,将外部时钟源设置为"晶振",在时钟设置界面中的HCLK的频率设置为72MHZ,自动调整其它器件的时钟频率。

stm32定时程序,嵌入式开发,stm32,嵌入式硬件,单片机,定时器,定时任务

stm32定时程序,嵌入式开发,stm32,嵌入式硬件,单片机,定时器,定时任务

对于我使用的STM32F108T6芯片只有4个定时器,即1个高级,3个通用寄存器。虽然没有基本定时器,但是这些定时器都包含了基本定时器功能。只需要对定时器的时钟源选择 Internal Clock (内部时钟源)就算打开了定时器。因为本次模拟的时钟频率是72MHZ,设置预分频器7200,自动重装载寄存器为10000,那么完成一个周期的计数就是1s,也就是1s触发一次定时器更新中断。同第一步类似,TIM也可以开启中断和DMA通道。保存并生成代码。

stm32定时程序,嵌入式开发,stm32,嵌入式硬件,单片机,定时器,定时任务

(2)实现定时任务和获取计数器数值:

以下示例代码为开启TIM中断和USART2中断实现,以及开启了自动重装载寄存器的影子寄存器

1.开启定时器

HAL_TIM_Base_Start(&htim);        //用阻塞的方式开始定时器

HAL_TIM_Base_Start_IT(&htim);        //用中断(非阻塞)的方式开始定时器

HAL_TIM_Base_Start_DMA(&htim);    //用DMA(非阻塞)的方式开始定时器

2.中断回调函数

在路径 ~/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim.c中

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)

当计数器数值和自动重装载寄存器值一样时调用

3.读写定时器中寄存器的宏定义操作

__HAL_TIM_GET_ANTORELOAD //获取自动重装载寄存器数值

__HAL_TIM_SET_ANTORELOAD //设置自动重装载寄存器数值

__HAL_TIM_GET_COUNTER        //获取计数器数值

__HAL_TIM_SET_COUNTER        //设置计数器数值

__HAL_TIM_SET_PRESCALER    //设置预分频器数值文章来源地址https://www.toymoban.com/news/detail-789039.html

4.示例代码

/* USER CODE BEGIN Includes */
#include <string.h>
#include <stdio.h>
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
TIM_HandleTypeDef htim4;

UART_HandleTypeDef huart2;
DMA_HandleTypeDef hdma_usart2_rx;
DMA_HandleTypeDef hdma_usart2_tx;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_TIM4_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
char message2[]="☺☹";
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim){
	if(htim == &htim4){
		HAL_UART_Transmit_IT(&huart2, (uint8_t*)message2,strlen(message2));
	}
}
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_USART2_UART_Init();
  //TIM4的初始化
  MX_TIM4_Init();
  /* USER CODE BEGIN 2 */
  //用中断的方式开启定时器
  HAL_TIM_Base_Start_IT(&htim4);
  int counter = 0;
  char message[20];
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
	  counter = __HAL_TIM_GET_COUNTER(&htim4);
	  sprintf(message,"counter:%d",counter);
	  //每隔100ms发送 counter计数器数值
	  //HAL_UART_Transmit_IT(&huart2, (uint8_t*)message,strlen(message));
	  //延迟100ms
	  HAL_Delay(100-1);
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

到了这里,关于STM32:基本定时器原理和定时程序的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • STM32 MCU 定时器详解(1)--基本定时器

    定时器是一种电子组件,主要用于定时控制,具备精确计时的能力。它可以在设定的时间间隔内触发特定的操作,如发送数据、采集传感器信息、检测输入信号或产生规律性输出波形。这种灵活性使定时器在多个行业中得到广泛应用,支持各种复杂功能的实现,是现代电子系

    2024年02月22日
    浏览(43)
  • STM32基本定时器中断

    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 提示:这里可以添加本文要记录的大概内容: 定时器有什么用?精准延时,PWM,做一个时钟:年月日,时分秒。时钟最基本的就是1s怎么来? 提示:以下是本篇文章正文内容,下面案例可供参考 1.1如何实

    2024年02月06日
    浏览(39)
  • STM32—定时器(TIM)_基本定时

    本文主要通过介绍定时器基本结构去学习如何使用定时器进行定时。 定时器可以对输入的时钟进行计数,并在计数值达到设定值时触发中断,从而达到计时功能。 本文从通用定时器介绍。本文所使用芯片为 STM32F103C8T6,拥有TIM1-TIM4 四个定时器资源。 图.2为基本定时器结构  

    2024年02月02日
    浏览(40)
  • 聊聊STM32的基本定时器

      STM32 的基本定时器(Basic Timer)是一种简单的定时器模块,用于生成基于时钟频率的定时中断。它可以用于实现各种定时和计时功能,例如延时、频率测量、PWM 生成等。 基本定时器通常由一个 16 位的自由运行计数器和一个预分频器组成。计数器的值可以根据预分频器的设

    2024年02月16日
    浏览(38)
  • STM32之基本定时器中断

    一、TIM(Timer)定时器 基本定时器中断可以对输入的时钟进行计数,并在计数值达到设定值(自动重装值)时触发中断; 16位计数器、预分频器、自动重装寄存器的时基单元,在72MHz计数时钟下可以实现最大59.65s的定时; 不仅具备基本的定时中断功能,而且还包含内外时钟源

    2024年02月08日
    浏览(33)
  • STM32定时器基本知识

    STM32定时器 PWM模式 在上面的例子中,我们使用了STM32的定时器3和GPIOB的引脚4来控制电机的运动。 首先,我们需要在GPIO配置函数中使能GPIOB的时钟,并将PB4引脚配置为复用功能,用于TIM3的通道1。 然后,在定时器配置函数中,我们使能了TIM3的时钟,并配置了TIM3的基本参数和通

    2024年02月11日
    浏览(36)
  • STM32中TIM定时器定时功能详解(适用基本,通用,高级定时器)

    定时器有高级定时器、通用定时器、基本定时器三种类型。具体功能如下。 上面是每种定时器所具有的功能。 我们可以看到每种定时器都有一个定时功能,(可能是名字的由来吧)。当然,每个定时器都可以来使用定时功能,但是我们往往在基本定时器和通用定时器上面使用

    2024年01月19日
    浏览(54)
  • STM32 基本定时器反转LED

    引脚是什么为什么要初始化引脚?      在嵌入式系统中,引脚是微控制器或微处理器上的物理引脚,用于连接外部设备、传感器或其他芯片。每个引脚都有特定的功能和用途,例如输入、输出、模拟输入、电源供应等。STM32F103C8T6引脚图: 初始化引脚的目的在于: 确定引脚

    2024年01月25日
    浏览(37)
  • STM32CubeMX教程5 TIM 定时器概述及基本定时器

    开发板(STM32F407G-DISC1) STM32CubeMX软件(Version 6.10.0) keil µVision5 IDE(MDK-Arm) ST-LINK/V2驱动 逻辑分析仪nanoDLA 使用STM32CubeMX软件配置STM32F407开发板 使用基本定时器TIM6实现每500ms控制绿灯状态变化一次,基本定时器TIM7实现每1s控制红灯状态变化一次 STM32F407拥有2个基础定时器、

    2024年02月03日
    浏览(79)
  • # HAL库STM32常用外设教程(四)—— 定时器 基本定时

    1、STM32F407ZGT6 2、STM32CubeMx软件 3、keil5 内容简述: 通篇文章将涉及以下内容,如有错误,欢迎指出 : 1、基础定时器特性 2、基础定时器的结构和功能 3、基础定时器HAL库驱动程序 (1)CubeMx配置 (2)TIM驱动程序   STM32F407有2个高级控制定时器(TIM1、TIM8)、8个通用定时器和

    2024年02月02日
    浏览(58)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包