EI级 | Matlab实现VMD-TCN-BiLSTM变分模态分解结合时间卷积双向长短期记忆神经网络多变量光伏功率时间序列预测

这篇具有很好参考价值的文章主要介绍了EI级 | Matlab实现VMD-TCN-BiLSTM变分模态分解结合时间卷积双向长短期记忆神经网络多变量光伏功率时间序列预测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

EI级 | Matlab实现VMD-TCN-BiLSTM变分模态分解结合时间卷积双向长短期记忆神经网络多变量光伏功率时间序列预测

预测效果

EI级 | Matlab实现VMD-TCN-BiLSTM变分模态分解结合时间卷积双向长短期记忆神经网络多变量光伏功率时间序列预测,时序预测,VMD-TCN-BiLSTM,TCN-BiLSTM,变分模态分解,时间卷积双向长短期记忆神经网络,多变量光伏功率时间序列预测
EI级 | Matlab实现VMD-TCN-BiLSTM变分模态分解结合时间卷积双向长短期记忆神经网络多变量光伏功率时间序列预测,时序预测,VMD-TCN-BiLSTM,TCN-BiLSTM,变分模态分解,时间卷积双向长短期记忆神经网络,多变量光伏功率时间序列预测
EI级 | Matlab实现VMD-TCN-BiLSTM变分模态分解结合时间卷积双向长短期记忆神经网络多变量光伏功率时间序列预测,时序预测,VMD-TCN-BiLSTM,TCN-BiLSTM,变分模态分解,时间卷积双向长短期记忆神经网络,多变量光伏功率时间序列预测

EI级 | Matlab实现VMD-TCN-BiLSTM变分模态分解结合时间卷积双向长短期记忆神经网络多变量光伏功率时间序列预测,时序预测,VMD-TCN-BiLSTM,TCN-BiLSTM,变分模态分解,时间卷积双向长短期记忆神经网络,多变量光伏功率时间序列预测

基本介绍

1.【EI级】Matlab实现VMD-TCN-BiLSTM多变量时间序列预测(光伏功率数据);
Matlab实现VMD-TCN-BiLSTM变分模态分解结合时间卷积双向长短期记忆神经网络多变量光伏功率时间序列预测;
VMD对光伏功率分解,TCN-BiLSTM模型对分量分别建模预测后相加。
2.运行环境为Matlab2021a及以上;
3.数据集为excel(光伏功率数据),输入多个特征,输出单个变量,多变量光伏功率时间序列预测,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、RMSE、MAE、ME等多指标评价;

EI级 | Matlab实现VMD-TCN-BiLSTM变分模态分解结合时间卷积双向长短期记忆神经网络多变量光伏功率时间序列预测,时序预测,VMD-TCN-BiLSTM,TCN-BiLSTM,变分模态分解,时间卷积双向长短期记忆神经网络,多变量光伏功率时间序列预测

EI级 | Matlab实现VMD-TCN-BiLSTM变分模态分解结合时间卷积双向长短期记忆神经网络多变量光伏功率时间序列预测,时序预测,VMD-TCN-BiLSTM,TCN-BiLSTM,变分模态分解,时间卷积双向长短期记忆神经网络,多变量光伏功率时间序列预测

参考文献(非复现)
EI级 | Matlab实现VMD-TCN-BiLSTM变分模态分解结合时间卷积双向长短期记忆神经网络多变量光伏功率时间序列预测,时序预测,VMD-TCN-BiLSTM,TCN-BiLSTM,变分模态分解,时间卷积双向长短期记忆神经网络,多变量光伏功率时间序列预测
EI级 | Matlab实现VMD-TCN-BiLSTM变分模态分解结合时间卷积双向长短期记忆神经网络多变量光伏功率时间序列预测,时序预测,VMD-TCN-BiLSTM,TCN-BiLSTM,变分模态分解,时间卷积双向长短期记忆神经网络,多变量光伏功率时间序列预测
EI级 | Matlab实现VMD-TCN-BiLSTM变分模态分解结合时间卷积双向长短期记忆神经网络多变量光伏功率时间序列预测,时序预测,VMD-TCN-BiLSTM,TCN-BiLSTM,变分模态分解,时间卷积双向长短期记忆神经网络,多变量光伏功率时间序列预测
EI级 | Matlab实现VMD-TCN-BiLSTM变分模态分解结合时间卷积双向长短期记忆神经网络多变量光伏功率时间序列预测,时序预测,VMD-TCN-BiLSTM,TCN-BiLSTM,变分模态分解,时间卷积双向长短期记忆神经网络,多变量光伏功率时间序列预测

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab实现VMD-TCN-BiLSTM变分模态分解结合时间卷积双向长短期记忆神经网络多变量光伏功率时间序列预测获取。

[data]=process(data1,n,hour,BaoLiu_num,JianGe_num);
X    = data(:,end)';
%% --------- some sample parameters forVMD:对于VMD样品参数进行设置---------------
alpha = 2000;       % moderate bandwidth constraint:适度的带宽约束/惩罚因子
tau = 0;            % noise-tolerance (no strict fidelity enforcement):噪声容限(没有严格的保真度执行)
K = 3;              % modes:分解的模态数,可以自行设置,这里以8为例。
DC = 0;             % no DC part imposed:无直流部分
init = 1;           % initialize omegas uniformly  :omegas的均匀初始化
tol = 1e-7;  
%% --------------- Run actual VMD code:数据进行vmd分解---------------------------
[u, u_hat, omega] = VMD(X, alpha, tau, K, DC, init, tol); %其中u为分解得到的IMF分量
figure;
imfn=u;
n=size(imfn,1); 
subplot(n+1,1,1);  
plot(X); 
ylabel('原始功率','fontsize',12,'fontname','宋体');
title('VMD分解');

for n1=1:n
    subplot(n+1,1,n1+1);
    plot(u(n1,:));%输出IMF分量,a(:,n)则表示矩阵a的第n列元素,u(n1,:)表示矩阵u的n1行元素
    ylabel(['IMF' int2str(n1)]);%int2str(i)是将数值i四舍五入后转变成字符,y轴命名
end
 xlabel('样本','fontsize',12,'fontname','宋体');
for i_vmd=1:K
data(:,end) = u(i_vmd,:)';

%% 输入天数
Tian=100;
weather=6;
his_time=4;
his_day=2;
time=BaoLiu_num;
shurugeshu = weather+his_time+his_day;%输入特征个数
lag = 1:time*his_day;

[input_train,input_valid,input_test,output_train,output_valid,output_test]=data_set(data,Tian,weather,time);
%% 
[~,bb]=mapminmax([input_train input_valid input_test]);
[cc,dd]=mapminmax([output_train output_valid output_test]);
%%
% 训练集
[tr_inputn,tr_outputn]=train_set(input_train,output_train,bb,dd,lag,his_time,his_day,time);
Xxun{1} = tr_inputn;  %训练集输入
Yxun{1} = tr_outputn; % 训练集输出
%%
% TCN参数
numChannel = 10;  % 通道数量
KerSize = 3;  % 卷积核大小
dropoutFactor = 0.025;  % droupt
numChan = 4;  % TCN残差块数

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501文章来源地址https://www.toymoban.com/news/detail-789126.html

到了这里,关于EI级 | Matlab实现VMD-TCN-BiLSTM变分模态分解结合时间卷积双向长短期记忆神经网络多变量光伏功率时间序列预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 变分模态分解(VMD)-Python代码

    变分模态分解(VMD)的原理推荐两个参考连接 变分模态分解原理步骤和VMD算法的介绍 代码可直接运行 以上就是所有内容,感谢敢看!求三连!

    2024年02月16日
    浏览(38)
  • 变分模态分解(VMD)与其改进算法

            之前参加课题组相关信号处理的课题的学习笔记。         变分模态分解(variational mode decomposition)VMD是2014年提出的一种非递归信号处理方法,通过将时间序列数据分解为一系列具有有限带宽的本征模态函数(IMF),迭代搜寻变分模态的最优解。VMD可以自适应更新各

    2024年02月07日
    浏览(53)
  • 变分模态分解(VMD)原理-附代码

    1 VMD算法原理 VMD的思想认为待分解信号是由不同IMF的子信号组成的。VMD为避免信号分解过程中出现模态混叠,在计算IMF时舍弃了传统信号分解算法所使用的递归求解的思想,VMD采用的是完全非递归的模态分解。与传统信号分解算法相比,VMD拥有非递归求解和自主选择模态个数

    2024年02月02日
    浏览(39)
  • VMD-SSA-LSTM基于变分模态分解和麻雀算法优化长短期记忆网络的时间序列预测MATLAB代码(含LSTM、VMD-LSTM、VMD-SSA-LSTM等模型的对比)。

    clc; clear all close all %% VMD-SSA-LSTM预测 tic load vmd_data.mat load lstm.mat disp(\\\'…………………………………………………………………………………………………………………………\\\') disp(\\\'VMD-SSA-LSTM预测\\\') disp(\\\'………………………………………………………………………………………

    2024年02月10日
    浏览(49)
  • 【VMD-DBO-LSTM】变分模态分解-蜣螂优化算法-长短时记忆神经网络研究(Python代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 1.1 变分模态分解算法 1.2 蜣螂优化算法 1.3 LSTM 📚2 运行

    2024年02月09日
    浏览(53)
  • 多维时序 | Matlab实现基于VMD-DBO-BiLSTM、VMD-BiLSTM、BiLSTM的多变量时间序列预测

    预测效果 基本介绍 Matlab实现基于VMD-DBO-BiLSTM、VMD-BiLSTM、BiLSTM的多变量时间序列预测(完整程序和数据) 1.先运行vmdtest,进行vmd分解; 2.再运行VMD-DBO-BiLSTM,三个模型对比; 3.运行环境Matlab2018及以上。 VMD-DBO-BiLSTM:变分模态分解结合蜣螂算法优化双向长短期记忆神经网络;

    2024年02月21日
    浏览(46)
  • 时间序列信号处理(一)-----变分模态分解(VMD)

    1.简述变分模态分解 变分模态分解--vmd,适用于非线性时间序列信号,主要是利用求解变分问题的思想去对信号进行提取,在不丢失原始信号特征的情况下,把一个原始信号分解成多个不同中心频率的信号,即不在同一个调制信号内。 2.以轴承信号为例 安装vmd库,直接pip in

    2024年02月16日
    浏览(35)
  • VMD如何确定分解层数(一):最优变分模态分解(OVMD)---VMD分解的基础上确定分解层数和更新步长

    上篇博文已经讲述了VMD的分解机制,关于其中的参数,特别是分解层数如何确定的问题,这篇文章给出一个解决方法:最优变分模态分解(OVMD),利用中心频率法确定分解层数K,利用残差指数指标确定更新步长tau。 关于利用中心频率法确定分解层数的文章,无论国内还是国

    2023年04月08日
    浏览(81)
  • 时序分解 | MATLAB实现MVMD多元变分模态分解信号分量可视化

    效果一览 基本介绍 MVMD多元变分模态分解 可直接替换 Matlab语言 1.算法新颖小众,用的人很少,包含分解图,效果如图所示,适合作为创❤️~ 2.直接替换数据即可用 适合新手小白 注释清晰~ 3.附赠测试数据 直接运行main一键出图~ 程序设计 完整源码和数据获取方式:私信

    2024年02月09日
    浏览(39)
  • 【MATLAB】逐次变分模态分解SVMD信号分解算法

    有意向获取代码,请转文末观看代码获取方式~ 逐次变分模态分解(Sequential Variational Mode Decomposition,简称SVMD)是一种用于信号处理和数据分析的方法。它可以将复杂的信号分解为一系列模态函数,每个模态函数代表了信号中的一个特定频率成分。 SVMD的主要目标是提取信号中

    2024年01月16日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包