Python数据可视化大屏最全教程(全)

这篇具有很好参考价值的文章主要介绍了Python数据可视化大屏最全教程(全)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

阅读本文大约需要3分钟

python可视化大屏,面试,学习路线,阿里巴巴,python,数据分析,数据挖掘,spring,android

主要内容:数据分析。

适用人群:Python初学者,数据分析师,或有志从事数据分析工作的人员。

准备软件:Anaconda(Spyder:代码编译)、Navicat Premium 12(数据库)。

python可视化大屏,面试,学习路线,阿里巴巴,python,数据分析,数据挖掘,spring,android

从事IT项目管理这么多年,基本上已经遗弃编程技能,但从2019年开始接触Python,深深地迷上了这门语言,像硬件集成、数据分析,我都会用python来写。晓风想通过本文,让初学者们学会以下内容:

1、Pyecharts图表;

2、连接数据库;

3、大屏看板-监控中心。

今天,我们讲:3、大屏看板如何布局

首先,我们自己先拟个大屏的草稿(如上图),把大屏分割成8个部分(Part0-7)。

python可视化大屏,面试,学习路线,阿里巴巴,python,数据分析,数据挖掘,spring,android

大屏内容设计好后,接上文,我们把图表的函数都用代码写出来

from pyecharts import options as opts
from pyecharts.charts import Bar,Gauge,Pie,Page,Funnel,Geo,Scatter3D
import random


def bar(): #柱状图
    cate = ['1月', '2月', '3月', '4月', '5月', '6月']
    c = (      
         Bar()
            .add_xaxis(cate)
            .add_yaxis("订单数", [random.randint(100, 200) for _ in cate])
            .add_yaxis("完成数", [random.randint(50, 100) for _ in cate])
            .set_series_opts(
                             label_opts=opts.LabelOpts(is_show=True,color="#2CB34A")
                             
            )
            .set_global_opts(title_opts=opts.TitleOpts(title="2021年订单推移图",
                                                       title_textstyle_opts=opts.TextStyleOpts(color="#2CB34A"),
                                                       pos_left="5%"),
                             legend_opts=opts.LegendOpts(textstyle_opts=opts.TextStyleOpts(color="#2CB34A")),
                             xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(color="#2CB34A")),
                             yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(color="#2CB34A"))
                                                     
            )
            .set_colors(["blue", "green"])
            #.render("bar_stack0.html")
    )
    return c


def tab0(name,color): #标题
    c = (Pie().
        set_global_opts(
        title_opts=opts.TitleOpts(title=name,pos_left='center',pos_top='center',
                                title_textstyle_opts=opts.TextStyleOpts(color=color,font_size=20))))
    return c


def tab1(name,color): #标题
    c = (Pie().
        set_global_opts(
        title_opts=opts.TitleOpts(title=name,pos_left='center',pos_top='center',
                                title_textstyle_opts=opts.TextStyleOpts(color=color,font_size=25))))
    return c


def gau():#仪表图
    c = (
        Gauge(init_opts=opts.InitOpts(width="400px", height="400px"))
            .add(series_name="库位利用率", data_pair=[["", 90]])
            .set_global_opts(
            legend_opts=opts.LegendOpts(is_show=False),
            tooltip_opts=opts.TooltipOpts(is_show=True, formatter="{a} <br/>{b} : {c}%"),
            
        )
            #.render("gauge.html")
    )
    return c


def radius():
    cate = ['客户A', '客户B', '客户C', '客户D', '客户E', '其他客户']
    data = [153, 124, 107, 99, 89, 46]
    c=Pie()
    c.add('', [list(z) for z in zip(cate, data)],
            radius=["30%", "75%"],
            rosetype="radius")
    c.set_global_opts(title_opts=opts.TitleOpts(title="客户销售额占比", padding=[1,250],title_textstyle_opts=opts.TextStyleOpts(color="#FFFFFF")),
                      legend_opts=opts.LegendOpts(textstyle_opts=opts.TextStyleOpts(color="#FFFFFF"),type_="scroll",orient="vertical",pos_right="5%",pos_top="middle")
                      )
    c.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%"))
    c.set_colors(['red',"orange", "yellow", "green", "Cyan", "purple"])
    
    return c


def funnel():
    cate = ['访问', '注册', '加入购物车', '提交订单', '付款成功']
    data = [30398, 15230, 10045, 8109, 5698]
    c = Funnel()
    c.add("用户数", [list(z) for z in zip(cate, data)], 
               sort_='ascending',
               label_opts=opts.LabelOpts(position="inside"))
    c.set_global_opts(title_opts=opts.TitleOpts(title=""))


    return c


def geo():
    city_num = [('武汉',105),('成都',70),('北京',99),
            ('西安',80),('杭州',60),('贵阳',34),
            ('上海',65),('深圳',54),('乌鲁木齐',76),
            ('哈尔滨',47),('兰州',56),('信阳',85)]
    start_end = [('宁波','成都'),('武汉','北京'),('武汉','西安'),
             ('长沙','杭州'),('武汉','贵阳'),('武汉','上海'),
             ('甘肃','深圳'),('北京','乌鲁木齐'),('上海','哈尔滨'),
             ('武汉','兰州'),('西藏','信阳')]
    c = Geo()
    c.add_schema(maptype='china', 
                itemstyle_opts=opts.ItemStyleOpts(color='#323c48', border_color='white'))
    # 4.添加数据
    c.add('', data_pair=city_num, color='white')
    c.add('', data_pair=start_end, type_="lines",label_opts=opts.LabelOpts(is_show=False),
         effect_opts=opts.EffectOpts(symbol="arrow", 
                                     color='gold', 
                                     symbol_size=7))
    c.set_global_opts(
        title_opts = opts.TitleOpts(title=""))
    
    return c


def scatter3D():
    data = [(random.randint(0, 100), random.randint(0, 100), random.randint(0, 100)) for _ in range(80)]
    c = (Scatter3D()
            .add("", data)
            .set_global_opts(
              title_opts=opts.TitleOpts(""),
            )
        )

接下来,我们引用Page函数,将所有图表堆积在一个页面中,代码如下

from pyecharts.charts import Page
page = Page() 
page.add(
         tab0("OFFICETOUCH","#2CB34A"), 
         bar(),
         tab1("数据可视化大屏","#2CB34A"),
         gau(),
         radius(),
         funnel(),
         geo(),
         scatter3D()
         )
page.render("datacenter.html")

我们运行下上述两段代码,发现布局是按照从上到下一个个呈现的,到此我们完成了一半的编码

python可视化大屏,面试,学习路线,阿里巴巴,python,数据分析,数据挖掘,spring,android

为了将图表按照我们的草稿布局,我们再引用HTML(from bs4 import BeautifulSoup)

from bs4 import BeautifulSoup
with open("datacenter.html", "r+", encoding='utf-8') as html:
    html_bf = BeautifulSoup(html, 'lxml')
    divs = html_bf.select('.chart-container')
    divs[0]["style"] = "width:10%;height:10%;position:absolute;top:0;left:2%;"
    divs[1]["style"] = "width:40%;height:40%;position:absolute;top:12%;left:0;"  
    divs[2]["style"] = "width:35%;height:10%;position:absolute;top:2%;left:30%;"
    divs[3]["style"] = "width:40%;height:40%;position:absolute;top:10%;left:28%;"
    divs[4]["style"] = "width:40%;height:35%;position:absolute;top:12%;left:55%;"
    divs[5]["style"] = "width:30%;height:35%;position:absolute;top:60%;left:2%;"
    divs[6]["style"] = "width:60%;height:50%;position:absolute;top:45%;left:15%;"
    divs[7]["style"] = "width:35%;height:40%;position:absolute;top:50%;left:60%;"
    body = html_bf.find("body")
    body["style"] = "background-image: "  # 背景颜色
    html_new = str(html_bf)
    html.seek(0, 0)
    html.truncate()
    html.write(html_new)
    html.close()

代码中的divs[0][“style”] = “width:10%;height:10%;position:absolute;top:0;left:2%;” 即是我们对Part0的宽度、高度、位置、上边距、左边距的定义,这里我们用百分比以达到屏幕自适应的效果。

最后,我们还可以设置一张背景图,代码合起来如下

from pyecharts import options as opts
from pyecharts.charts import Bar,Gauge,Pie,Page,Funnel,Geo,Scatter3D
import random




def bar(): #柱状图
    cate = ['1月', '2月', '3月', '4月', '5月', '6月']
    c = (      
         Bar()
            .add_xaxis(cate)
            .add_yaxis("订单数", [random.randint(100, 200) for _ in cate])
            .add_yaxis("完成数", [random.randint(50, 100) for _ in cate])
            .set_series_opts(
                             label_opts=opts.LabelOpts(is_show=True,color="#2CB34A")
                             
            )
            .set_global_opts(title_opts=opts.TitleOpts(title="2021年订单推移图",
                                                       title_textstyle_opts=opts.TextStyleOpts(color="#2CB34A"),
                                                       pos_left="5%"),
                             legend_opts=opts.LegendOpts(textstyle_opts=opts.TextStyleOpts(color="#2CB34A")),
                             xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(color="#2CB34A")),
                             yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(color="#2CB34A"))
                                                     
            )
            .set_colors(["blue", "green"])
            #.render("bar_stack0.html")
    )
    return c


def tab0(name,color): #标题
    c = (Pie().
        set_global_opts(
        title_opts=opts.TitleOpts(title=name,pos_left='center',pos_top='center',
                                title_textstyle_opts=opts.TextStyleOpts(color=color,font_size=20))))
    return c


def tab1(name,color): #标题
    c = (Pie().
        set_global_opts(
        title_opts=opts.TitleOpts(title=name,pos_left='center',pos_top='center',
                                title_textstyle_opts=opts.TextStyleOpts(color=color,font_size=25))))
    return c






def gau():#仪表图
    c = (
        Gauge(init_opts=opts.InitOpts(width="400px", height="400px"))
            .add(series_name="库位利用率", data_pair=[["", 90]])
            .set_global_opts(
            legend_opts=opts.LegendOpts(is_show=False),
            tooltip_opts=opts.TooltipOpts(is_show=True, formatter="{a} <br/>{b} : {c}%"),
            
        )
            #.render("gauge.html")
    )
    return c


def radius():
    cate = ['客户A', '客户B', '客户C', '客户D', '客户E', '其他客户']
    data = [153, 124, 107, 99, 89, 46]
    c=Pie()
    c.add('', [list(z) for z in zip(cate, data)],
            radius=["30%", "75%"],
            rosetype="radius")
    c.set_global_opts(title_opts=opts.TitleOpts(title="客户销售额占比", padding=[1,250],title_textstyle_opts=opts.TextStyleOpts(color="#FFFFFF")),
                      legend_opts=opts.LegendOpts(textstyle_opts=opts.TextStyleOpts(color="#FFFFFF"),type_="scroll",orient="vertical",pos_right="5%",pos_top="middle")
                      )
    c.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%"))
    c.set_colors(['red',"orange", "yellow", "green", "Cyan", "purple"])
    
    return c


def funnel():
    cate = ['访问', '注册', '加入购物车', '提交订单', '付款成功']
    data = [30398, 15230, 10045, 8109, 5698]
    c = Funnel()
    c.add("用户数", [list(z) for z in zip(cate, data)], 
               sort_='ascending',
               label_opts=opts.LabelOpts(position="inside"))
    c.set_global_opts(title_opts=opts.TitleOpts(title=""))


    return c


def geo():
    city_num = [('武汉',105),('成都',70),('北京',99),
            ('西安',80),('杭州',60),('贵阳',34),
            ('上海',65),('深圳',54),('乌鲁木齐',76),
            ('哈尔滨',47),('兰州',56),('信阳',85)]
    start_end = [('宁波','成都'),('武汉','北京'),('武汉','西安'),
             ('长沙','杭州'),('武汉','贵阳'),('武汉','上海'),
             ('甘肃','深圳'),('北京','乌鲁木齐'),('上海','哈尔滨'),
             ('武汉','兰州'),('西藏','信阳')]
    c = Geo()
    c.add_schema(maptype='china', 
                itemstyle_opts=opts.ItemStyleOpts(color='#323c48', border_color='white'))
    # 4.添加数据
    c.add('', data_pair=city_num, color='white')
    c.add('', data_pair=start_end, type_="lines",label_opts=opts.LabelOpts(is_show=False),
         effect_opts=opts.EffectOpts(symbol="arrow", 
                                     color='gold', 
                                     symbol_size=7))
    c.set_global_opts(
        title_opts = opts.TitleOpts(title=""))
    
    return c


def scatter3D():
    data = [(random.randint(0, 100), random.randint(0, 100), random.randint(0, 100)) for _ in range(80)]
    c = (Scatter3D()
            .add("", data)
            .set_global_opts(
              title_opts=opts.TitleOpts(""),
            )
        )
    return c


page = Page() 
page.add(
         tab0("OFFICETOUCH","#2CB34A"), 
         bar(),
         tab1("数据可视化大屏","#2CB34A"),
         gau(),
         radius(),
         funnel(),
         geo(),
         scatter3D()
         )
page.render("datacenter.html")
#os.system("scatter.html")


from bs4 import BeautifulSoup
with open("datacenter.html", "r+", encoding='utf-8') as html:
    html_bf = BeautifulSoup(html, 'lxml')
    divs = html_bf.select('.chart-container')
    divs[0]["style"] = "width:10%;height:10%;position:absolute;top:0;left:2%;"
    divs[1]["style"] = "width:40%;height:40%;position:absolute;top:12%;left:0;"  
    divs[2]["style"] = "width:35%;height:10%;position:absolute;top:2%;left:30%;"
    divs[3]["style"] = "width:40%;height:40%;position:absolute;top:10%;left:28%;"
    divs[4]["style"] = "width:40%;height:35%;position:absolute;top:12%;left:55%;"
    divs[5]["style"] = "width:30%;height:35%;position:absolute;top:60%;left:2%;"
    divs[6]["style"] = "width:60%;height:50%;position:absolute;top:45%;left:15%;"
    divs[7]["style"] = "width:35%;height:40%;position:absolute;top:50%;left:60%;"
    body = html_bf.find("body")
    body["style"] = "background-image: url(bgd.jpg)"  # 背景颜色
    html_new = str(html_bf)
    html.seek(0, 0)
    html.truncate()
    html.write(html_new)

效果图如下:

python可视化大屏,面试,学习路线,阿里巴巴,python,数据分析,数据挖掘,spring,android

python可视化大屏,面试,学习路线,阿里巴巴,python,数据分析,数据挖掘,spring,android

学习到了这里,你是否能独立完成数据可视化的工作了啊?晓风终于不辱使命,向大家完整地介绍了如何使用Python绘制数据可视化大屏。晓风还会继续努力,为大家带来更多有趣、实用、简单地Python功能,愿我们一起成长!

另两篇教程,如下:

1、Python大屏看板最全教程之Pyecharts图表:https://blog.csdn.net/weixin_42341655/article/details/118078089

2、Python大屏看板最全教程之数据库连接https://blog.csdn.net/weixin_42341655/article/details/118096691

如果觉得有用的话,请帮忙点赞、关注、收藏哦,感谢您的支持!文章来源地址https://www.toymoban.com/news/detail-789211.html

到了这里,关于Python数据可视化大屏最全教程(全)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 大数据毕设 大数据招聘岗位数据分析与可视化 - 爬虫 python 大屏可视化

    # 1 前言 🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项

    2024年02月10日
    浏览(55)
  • 大数据毕设分享 大数据招聘岗位数据分析与可视化 - 爬虫 python 大屏可视化

    # 1 前言 🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项

    2024年02月04日
    浏览(60)
  • 大数据毕设项目 大数据招聘岗位数据分析与可视化 - 爬虫 python 大屏可视化

    # 1 前言 🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项

    2024年02月05日
    浏览(47)
  • 【数据可视化】基于Python和Echarts的中国经济发展与人口变化可视化大屏

    1.题目要求 本次课程设计要求使用Python和ECharts实现数据可视化大屏。要求每个人的数据集不同,用ECharts制作Dashboard(总共至少4图),要求输入查询项(地点和时间)可查询数据,查询的数据的地理位置展示在地图上;绘制一个带时间轴的动态图,展示不同时间的数据;根据

    2024年02月16日
    浏览(46)
  • 基于Python的豆瓣电影数据分析可视化系统的设计与实现-可视化分析大屏

    收藏关注不迷路 本文拟采用Python技术和Django 搭建系统框架,后台使用MySQL数据库进行信息管理,设计开发基于python的豆瓣电影数据分析可视化系统。通过调研和分析,系统拥有管理员和用户两个角色,主要具备个人中心、电影管理、用户管理、系统管理等功能模块。将纸质管

    2024年02月03日
    浏览(68)
  • Python淘宝手机数据可视化分析大屏全屏系统

     博主介绍 :黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。 所有项目都配有从入门到精通的基础知识视频课程,学习后应对毕业设计答辩。 项目配有对应开发文档、

    2024年04月14日
    浏览(53)
  • Python招聘信息爬虫数据可视化分析大屏全屏系统

     博主介绍 :黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。 所有项目都配有从入门到精通的基础知识视频课程,学习后应对毕业设计答辩。 项目配有对应开发文档、

    2024年04月09日
    浏览(64)
  • Python淘宝手机爬虫数据可视化分析大屏全屏系统

     博主介绍 :黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。 所有项目都配有从入门到精通的基础知识视频课程,学习后应对毕业设计答辩。 项目配有对应开发文档、

    2024年04月17日
    浏览(51)
  • Python爬虫淘宝手机数据可视化分析大屏全屏系统

     博主介绍 :黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。 所有项目都配有从入门到精通的基础知识视频课程,免费 项目配有对应开发文档、开题报告、任务书、

    2024年02月03日
    浏览(51)
  • 大数据毕业设计:基于python商品数据采集分析可视化系统 淘宝数据采集 大数据 大屏可视化(附源码+论文)✅

    博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业毕业设计项目实战6年之久,选择我们就是选择放心、选择安心毕业✌感兴趣的可以先收藏起来,点赞、关注不迷路✌ 毕业设计:2023-2024年计算机专业毕业设计选题汇总(建议

    2024年02月03日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包