本文仅供学习使用,总结很多本现有讲述运动学或动力学书籍后的总结,从矢量的角度进行分析,方法比较传统,但更易理解,并且现有的看似抽象方法,两者本质上并无不同。
2024年底本人学位论文发表后方可摘抄
若有帮助请引用
本文参考:黎 旭,陈 强 洪,甄 文 强 等.惯 性 张 量 平 移 和 旋 转 复 合 变 换 的 一 般 形 式 及 其 应 用[J].工 程 数 学 学 报,2022,39(06):1005-1011.
文章来源:https://www.toymoban.com/news/detail-789287.html
食用方法
质量点的动量与角动量
刚体的动量与角动量——力与力矩的关系
惯性矩阵的表达与推导——在刚体运动过程中的作用
惯性矩阵在不同坐标系下的表达
务必自己推导全部公式,并理解每个符号的含义文章来源地址https://www.toymoban.com/news/detail-789287.html
2.2.3 欧拉方程 Euler equation - 2
- 进而分析 H ⃗ Σ M F = m t o t a l ⋅ R ⃗ G F × V ⃗ G F + ∫ ( R ⃗ G P i F ⋅ R ⃗ G P i F ) ω ⃗ M F d m i − ∫ ( R ⃗ G P i F ⋅ ω ⃗ M F ) R ⃗ G P i F d m i \vec{H}_{\Sigma _{\mathrm{M}}}^{F}=m_{\mathrm{total}}\cdot \vec{R}_{\mathrm{G}}^{F}\times \vec{V}_{\mathrm{G}}^{F}+\int{\left( \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F} \right) \vec{\omega}_{\mathrm{M}}^{F}}\mathrm{d}m_{\mathrm{i}}-\int{\left( \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot \vec{\omega}_{\mathrm{M}}^{F} \right) \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}\mathrm{d}m_{\mathrm{i}} HΣMF=mtotal⋅RGF×VGF+∫(RGPiF⋅RGPiF)ωMFdmi−∫(RGPiF⋅ωMF)RGPiFdmi,有:
H ⃗ Σ M F = m t o t a l ⋅ R ⃗ G F × V ⃗ G F + ∫ ( R ⃗ G P i F T R ⃗ G P i F ⋅ E 3 × 3 − R ⃗ G P i F R ⃗ G P i F T ) d m i ⋅ ω ⃗ M F = m t o t a l ⋅ R ⃗ G F × V ⃗ G F + [ I ] Σ M / G F ⋅ ω ⃗ M F H ⃗ Σ M / G F = H ⃗ Σ M F − m t o t a l ⋅ R ⃗ G F × V ⃗ G F = [ I ] Σ M / G F ⋅ ω ⃗ M F \begin{split} &\vec{H}_{\Sigma _{\mathrm{M}}}^{F}=m_{\mathrm{total}}\cdot \vec{R}_{\mathrm{G}}^{F}\times \vec{V}_{\mathrm{G}}^{F}+\int{\left( {\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}}\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot E^{3\times 3}-\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}{\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}} \right)}\mathrm{d}m_{\mathrm{i}}\cdot \vec{\omega}_{\mathrm{M}}^{F} =m_{\mathrm{total}}\cdot \vec{R}_{\mathrm{G}}^{F}\times \vec{V}_{\mathrm{G}}^{F}+\left[ I \right] _{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}\cdot \vec{\omega}_{\mathrm{M}}^{F} \\ &\vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}=\vec{H}_{\Sigma _{\mathrm{M}}}^{F}-m_{\mathrm{total}}\cdot \vec{R}_{\mathrm{G}}^{F}\times \vec{V}_{\mathrm{G}}^{F}=\left[ I \right] _{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}\cdot \vec{\omega}_{\mathrm{M}}^{F} \end{split} HΣMF=mtotal⋅RGF×VGF+∫(RGPiFTRGPiF⋅E3×3−RGPiFRGPiFT)dmi⋅ωMF=mtotal⋅RGF×VGF+[I]ΣM/GF⋅ωMFHΣM/GF=HΣMF−mtotal⋅RGF×VGF=[I]ΣM/GF⋅ωMF
则相对于质心点 G G G 存在:
{ M ⃗ Σ M / G F = [ I ] Σ M / G F α ⃗ M F + ω ⃗ M F × ( [ I ] Σ M / G F ⋅ ω ⃗ M F ) [ I ] Σ M / G F = ∫ ( R ⃗ G P i F T R ⃗ G P i F ⋅ E 3 × 3 − R ⃗ G P i F R ⃗ G P i F T ) d m i F ⃗ G F = m t o t a l a ⃗ G F \begin{cases} \vec{M}_{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}=\left[ I \right] _{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}\vec{\alpha}_{\mathrm{M}}^{F}+\vec{\omega}_{\mathrm{M}}^{F}\times \left( \left[ I \right] _{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}\cdot \vec{\omega}_{\mathrm{M}}^{F} \right)\\ \left[ I \right] _{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}=\int{\left( {\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}}\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot E^{3\times 3}-\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}{\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}} \right)}\mathrm{d}m_{\mathrm{i}}\\ \vec{F}_{\mathrm{G}}^{F}=m_{\mathrm{total}}\vec{a}_{\mathrm{G}}^{F}\\ \end{cases} ⎩ ⎨ ⎧MΣM/GF=[I]ΣM/GFαMF+ωMF×([I]ΣM/GF⋅ωMF)[I]ΣM/GF=∫(RGPiFTRGPiF⋅E3×3−RGPiFRGPiFT)dmiFGF=mtotalaGF - 对 H ⃗ Σ M / O F \vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F} HΣM/OF进一步推导(分析 [ I ] Σ M / G F \left[ I \right] _{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F} [I]ΣM/GF),可得:
H ⃗ Σ M / O F = ∑ i N R ⃗ O P i F × P ⃗ P i F = ∑ i N m P i ⋅ R ⃗ O P i F × ( V ⃗ O F + ω ⃗ F × R ⃗ O P i F ) = ∑ i N m P i ⋅ R ⃗ ~ O P i F ⋅ ( ω ⃗ ~ F ⋅ R ⃗ O P i F ) + ∑ i N m P i ⋅ R ⃗ ~ O P i F ⋅ V ⃗ O F = ∑ i N m P i ⋅ [ I ^ J ^ K ^ ] T [ 0 − z O P i F y O P i F z O P i F 0 − x O P i F − y O P i F x O P i F 0 ] ⋅ [ I ^ J ^ K ^ ] T ( [ 0 − w z P i F w y P i F w z P i F 0 − w x P i F − w y P i F w x P i F 0 ] ⋅ [ x O P i F y O P i F z O P i F ] ) + m t o t a l ⋅ R ⃗ ~ O G F ⋅ V ⃗ O F = ∑ i N m P i ⋅ [ I ^ J ^ K ^ ] T [ [ ( y O P i F ) 2 + ( z O P i F ) 2 ] w x P i F − ( x O P i F y O P i F ) w y P i F − ( x O P i F z O P i F ) w z P i F − ( y O P i F x O P i F ) w x P i F + [ ( x O P i F ) 2 + ( z O P i F ) 2 ] w y P i F − ( y O P i F z O P i F ) w z P i F − ( z O P i F x O P i F ) w x P i F − ( z O P i F y O P i F ) w y P i F + [ ( x O P i F ) 2 + ( y O P i F ) 2 ] w z P i F ] +
到了这里,关于[足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-2(3) 质量刚体的在坐标系下运动的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!