强化学习的数学基础:从动态规划到深度学习

这篇具有很好参考价值的文章主要介绍了强化学习的数学基础:从动态规划到深度学习。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.背景介绍

强化学习(Reinforcement Learning, RL)是一种人工智能技术,它旨在让智能体(agent)在环境(environment)中学习如何做出最佳决策,以最大化累积奖励(cumulative reward)。强化学习的核心思想是通过在环境中与智能体与环境的交互来学习,而不是通过传统的监督学习(supervised learning)方法,这使得强化学习可以应用于那些传统方法无法处理的问题,例如游戏、机器人控制、自动驾驶等。

强化学习的主要组成部分包括:

  • 智能体(agent):一个可以执行动作(action)的实体,它的目标是最大化累积奖励。
  • 环境(environment):一个可以与智能体互动的系统,它提供了智能体可以执行的动作和执行动作后的结果。
  • 状态(state):环境在某一时刻的描述,智能体在执行动作时需要考虑的信息。
  • 动作(action):智能体可以执行的操作,动作的执行会影响环境的状态和产生奖励。
  • 奖励(reward):智能体在执行动作后获得或损失的点数,智能体的目标是最大化累积奖励。

强化学习的主要挑战是如何在有限的时间内找到一个高效的策略,以便智能体可以在环境中取得最佳性能。为了解决这个问题,强化学习使用了一系列算法,例如动态规划(dynamic programming)、蒙特卡罗方法(Monte Carlo method)、文章来源地址https://www.toymoban.com/news/detail-789370.html

到了这里,关于强化学习的数学基础:从动态规划到深度学习的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【深度学习】S2 数学基础 P4 微积分(下)偏导数与链式法则

    总结来说 ,深度学习的核心在于优化;优化的重点在于降低损失值;降低损失值需要通过反向梯度下降;而微积分,判断的就是梯度下降的方向和大小。 铺开来说 ,深度学习的核心目标是通过优化过程来训练模型,以便在给定输入数据时能够产生准确的预测。而为了评估模

    2024年02月21日
    浏览(54)
  • 强化学习基础三大优化方法:(一)动态规划

    强化学习是一类解决马尔可夫决策过程的方法,其中, 动态规划、蒙特卡洛 以及 时序差分 是强化学习算法的三大基础算法。本文就其实际效果来对比三种方法以及其子方法的不同与优缺点。本文就动态规划方法进行简单介绍。 动态规划是一类优化方法,在给定一个马尔可

    2024年02月08日
    浏览(82)
  • 深度学习·理论篇(2023版)·第002篇深度学习和计算机视觉中的基础数学知识01:线性变换的定义+基于角度的线性变换案例(坐标变换)+点积和投影+矩阵乘法的几何意义+图形化精讲

    💕 恭喜本博客浏览量达到两百万,CSDN内容合伙人,CSDN人工智能领域实力新星~ 🧡 本文章为2021版本迭代更新版本,在结合有效知识的基础上对文章进行合理的增加,使得整个文章时刻顺应时代需要 🧡 本专栏将通过系统的深度学习实例,从可解释性的角度对深度学习的原理

    2023年04月08日
    浏览(56)
  • 数学建模基础算法Chapter2.1 -- 整数规划(ILP): 分支定界+割平面

    By 进栈需检票 当题目要求的最优解是整数,例如物件的数量,参与人员的数量等时,就不能继续使用之前的线性规划了(当出现小数的情况),这个时候需考虑整数规划这样的一种建模形式 但是目前所流行的求整数规划的方法,只适用于整数线性规划,不能解决一切的整数

    2024年02月12日
    浏览(54)
  • 强化学习从基础到进阶-案例与实践[2]:马尔科夫决策、贝尔曼方程、动态规划、策略价值迭代

    【强化学习原理+项目专栏】必看系列:单智能体、多智能体算法原理+项目实战、相关技巧(调参、画图等、趣味项目实现、学术应用项目实现 专栏详细介绍 :【强化学习原理+项目专栏】必看系列:单智能体、多智能体算法原理+项目实战、相关技巧(调参、画图等、趣味项

    2024年02月15日
    浏览(136)
  • 机器学习的数学基础(上)

    []{#_Toc405731550 .anchor} 目录 机器学习的数学基础 1 高等数学 1 线性代数 9 概率论和数理统计 19 高等数学 1.导数定义: 导数和微分的概念 f ′ ( x 0 ) = lim ⁡ Δ x → 0   f ( x 0 + Δ x ) − f ( x 0 ) Δx f\\\'(x_{0}) = lim_{Delta x rightarrow 0},frac{f(x_{0} + Delta x) - f(x_{0})}{text{Δx}} f ′ ( x 0 ​

    2023年04月26日
    浏览(40)
  • 零基础学习数学建模——(一)什么是数学建模

    本篇博客将详细介绍什么是数学建模。 ​ 本人在本科阶段获得过国赛省一、mathorcup数学建模一等奖、五一杯数学建模一等奖、华数杯数学建模一等奖、亚太杯数学建模一等奖和两次美赛一等奖。自己在数学建模这条路上摸爬滚打了几年,现在想借助博客分享自己在数学建模

    2024年01月25日
    浏览(59)
  • 线性代数 | 机器学习数学基础

    前言 线性代数 (linear algebra)是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 本文主要介绍 机器学习 中所用到的线性代数 核心基础概念 ,供读者学习阶段查漏补缺或是 快速学习参考 。 线性代数

    2024年01月21日
    浏览(69)
  • 机器学习——支持向量机(数学基础推导篇【未完】)

    在一个周日下午,夏天的雨稀里哗啦地下着 我躺在床上,捧着ipad看支持向量机 睡了好几个觉…支持向量机太好睡了 拉格朗日乘数法太好睡了 几何函数太好睡了 在我看来,支持向量机是目前学下来,最难以理解的内容 希望日后不要太难…脑子不支持的 支持向量积的原理,

    2024年02月12日
    浏览(95)
  • 强化学习从基础到进阶-常见问题和面试必知必答[2]:马尔科夫决策、贝尔曼方程、动态规划、策略价值迭代

    马尔可夫性质(Markov property,MP) :如果某一个过程未来的状态与过去的状态无关,只由现在的状态决定,那么其具有马尔可夫性质。换句话说,一个状态的下一个状态只取决于它的当前状态,而与它当前状态之前的状态都没有关系。 马尔可夫链(Markov chain) : 概率论和数

    2024年03月26日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包