C++ 算法主题系列之集结0-1背包问题的所有求解方案

这篇具有很好参考价值的文章主要介绍了C++ 算法主题系列之集结0-1背包问题的所有求解方案。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 前言

背包问题是类型问题,通过对这一类型问题的理解和掌握,从而可以归纳出求解此类问题的思路和模板。

背包问题的分类有:

  • 0-1背包问题,也称为不可分割背包问题。
  • 无限背包问题。
  • 判定性背包问题.
  • 带附属关系的背包问题。
  • 双背包求最优值.
  • 构造三角形问题.
  • 带上下界限制的背包问题(012背包)
  • ……

本文将介绍0-1背包问题的各种求解方案,通过对各种求解方案的研究,从而全方面了解0-1背包问题的本质。

2. 0-1 背包问题

问题描述:

有一背包,能容纳的重量为 m,现有 n种物品,每种物品有重量和价值 2 个属性。请设计一个算法,在不分割物品的情况下,保证背包中所容纳的物品的总价值是最大的。

0-1背包也称为完全背包或不可分割背包问题,是一类常见的背包问题。常用的实现方案有递归动态规划

2.1 递归算法

可以有 3 种写法。

2.1.1 第一种递归回溯方案

回顾递归回溯算法适合的问题域:

  • 待解决的问题可以分多步。如迷宫问题、排列组合问题……
  • 每一步都可能存在多个选择,当某一个选择行不通,或此选择结束后,可以回溯到上一步再另行选择。

那么背包问题是否适合上述的要求?

  • 可以想象背包里有很多个格间。当每一个格间填充完毕,则表示得到一种求解。
  • 对于格间而言,每一种物品都是一种选择,可以通地回溯再选择另一个物品。
  • 其本质是对物品进行任意组合,然后再选择总价值最大的一种组合。

如下图,有 3 个物品需要放置入容量为 50 的背包中。初始可把背包想象成一个大格间,此时可以试着放入物品中的一个。

c++解决01背包问题,C++编程之美,背包,c++,0-1背包,回溯算法,动态规划

物品放入格间的条件:

  • 物品不曾在背包中。
  • 物品的重量小于或等于背包现有容量。

如下图,把物品一放入背包中。且把背包剩下空间想象为一个格间,在余下的物品中选择一个放入此格间中。

c++解决01背包问题,C++编程之美,背包,c++,0-1背包,回溯算法,动态规划

如下,把物品二放入格间中。

c++解决01背包问题,C++编程之美,背包,c++,0-1背包,回溯算法,动态规划

物品一物品二的重量之和为 50。等于背包总容量。此时,背包中已经没有剩余空间。也意味着不能再向此背包中放入物品。

至此,可以输出背包中的物品,且把背包中的总价值 180 存储在全局变量中,以便在后续操作时,查找是否还有比此值更大的值。

回溯物品

所谓回溯物品,指把物品从背包中移走,试着再放入一个其它物品。

如下图,回溯物品二,腾出格间。因物品三满足放入条件,放入格间。

c++解决01背包问题,C++编程之美,背包,c++,0-1背包,回溯算法,动态规划

此时,背包还有剩余空间,同样把剩余空间想象成一个格间。因有剩余空间,可以试着把物品二放入背包中。

c++解决01背包问题,C++编程之美,背包,c++,0-1背包,回溯算法,动态规划

但因物品二的重量大于背包已有的容量,不能放入。此时,可以输出背包中的物品信息,并记录背包中的最大价值为110。因比前面的180的值小,继续保留 180这个价值为当前最大值。

对上述流程做一个简单总结:

  • 当背包还有空间,且有物品可以放入时,则加入到背包中。

  • 当背包不再能放下任何一件物品时,计算此时的总价值,并确定是不是最大价值。

    Tips:这里有一点需要注意,递归函数的出口有 2 个,一是还有物品可选择,但不能放入背包中。二是不再有物品可供选择。

  • 回溯当前已经放入物品,选择其它物品,重复上述过程,一直到找到真正的最大值。

代码如下所示:

#include<bits/stdc++.h>
using namespace std;
struct Goods {
	//重量
	int weight;
	//价值
	int price;
	//装入状态
	bool isUse;
};
/*
*初始化
*/
Goods allGoods[3]= { {20,60,false},{30,120,false},{10,50,false}};

//背包重量
int weight=50;
//最大价值
int maxPrice=0;
//总价值
int totalPrice=0;
/*
* 0-1 背包
* idx:物品编号,只需要考虑组合
* deep:递归深度
*/
void bag(int idx,int deep,int weight) {
	//每次都可以从所有物品中进行选择
	for(int i=idx; i<3; i++) {
		if( allGoods[i].isUse==false  ) {
			//物品不曾放入背包
			if( allGoods[i].weight<=weight) {
				//且可以放下,增加背包中的总价值
				totalPrice+=allGoods[i].price;
				//标志此物品已经放入
				allGoods[i].isUse=true;
				//继续放置物品
				bag(i,deep+1,weight - allGoods[i].weight);
				//回溯
				totalPrice-=allGoods[i].price;
				allGoods[i].isUse=false;
			} else {
				//出口一:不可以放下,计算此时背包中的物品的价值是否是最大值,
				cout<<"-----------查询到某个物品不能放下时,显示背包中信息------------"<<endl;
				if(totalPrice>maxPrice) maxPrice= totalPrice;
				for(int j=0; j<3; j++)
					if(allGoods[j].isUse)
						cout<<allGoods[j].weight<<","<<allGoods[j].price<<endl;
				return ;
			}
		}
	}
    //出口二:不再有物品可以选择
	cout<<"--------当没有物品可选择时也要显示背包中物品信息-----------"<<endl;
	if(totalPrice>maxPrice) maxPrice= totalPrice;
	cout<<"此时背包中物品"<<endl;
	for(int j=0; j<3; j++)
		if(allGoods[j].isUse)
			cout<<allGoods[j].weight<<","<<allGoods[j].price<<endl;
}
//测试
int main() {
	bag(0,1,weight);
	cout<<"---------------------"<<endl;
	cout<<"最终背包中最大价值"<<maxPrice<<endl;
	return 0;
}

测试结果:

c++解决01背包问题,C++编程之美,背包,c++,0-1背包,回溯算法,动态规划

2.1.2 第二种回溯方案

第一种回溯方案,略显复杂,可以采用下面的回溯方案。

此方案中把物品可放入和不可放入做为选择。但其本质和上述实现是一样的。

#include<bits/stdc++.h>
using namespace std;
struct Goods {
	//物品重量
	int weight;
	//物品价值
	int value;
	//物品状态 1 已经使用,0 未使用
	int isUse;
};

//最大价值
int maxPrice=0;
//总价值
int totalPrice=0;
//背包重量
int bagWeight=100;
//物品信息
Goods allGoods[5]= { {20,60,false},{30,120,false},{10,50,false},{20,20,false},{40,100,false} };
int count=4;
/*
*显示背包中物品
*/
void showBag() {
	for(int i=0; i<5; i++) {
		if(allGoods[i].isUse)
			cout<<allGoods[i].weight<<","<<allGoods[i].value<<endl;
	}
}
/*
* idx: 物品编号
* count: 物品总数量
*/
void zeroAndOneBag(int idx,int weight) {
    //物品只有两种状态
	for(int i=0; i<=1; i++) {
		if( weight-allGoods[idx].weight*i>=0 ) {
			//物品状态
			allGoods[idx].isUse=i;
			//总价值
			totalPrice+=allGoods[idx].value*i;
			if(idx==4) {
				if(totalPrice>maxPrice) {
					maxPrice=totalPrice;
					cout<<"------------"<<endl;
					showBag();
					cout<<maxPrice<<endl;
				}
			} else {
				zeroAndOneBag(idx+1,weight-allGoods[idx].weight*i);
			}
			//回溯
			allGoods[idx].isUse=0;
			totalPrice-=allGoods[idx].value*i;
		}
	}
}
//测试
int main() {
	zeroAndOneBag(0,bagWeight);
	return 0;
}
2.1.3 第三种方案

前两种方案,不仅可得到最优值,且可以得到寻找过程中的各种组合方案。如果仅仅是想得到最终结果,不在乎中间的过程,则可以使用下面的递归方案。

#include<iostream>
#include<windows.h>//max函数
using namespace std;
struct Goods {
	//重量
	int weight;
	//价值
	int price;
	//装入状态
	bool isUse;
};
//所有物品
Goods allGoods[5]= { {20,60,false},{30,120,false},{10,50,false},{20,20,false},{40,100,false} };
//背包重量
int bagWeight = 100;
//物品总数量
int totalNumber = 5;
/*
*递归
*/
int zeroAndOneBag(int index, int remainWeight) {
	int totalPrice = 0;
	//没有物品可放
	if (index == totalNumber) return 0;
	if (allGoods[index].weight > remainWeight)
		//当前物品不能放入,查看其它物品放入的情况
		totalPrice = zeroAndOneBag(index + 1, remainWeight);
	else
		//当前物品可以放入,则在把此物品放入和不放入背包时的最大价值 
		totalPrice = max(zeroAndOneBag(index + 1, remainWeight -allGoods[index].weight) + allGoods[index].price, zeroAndOneBag(index + 1, remainWeight));
	return totalPrice;
}
//测试
int main() {
	int value = zeroAndOneBag(0, bagWeight);
	cout << value << endl;
	return 0;
}

2.2 动态规划

背包问题,有 2 个状态值,背包的容量和可选择的物品。

  • 物品对于背包而言,只有 2 种选择,要么装下物品,要么装不下,如下图所示,表格的行号表示物品编号,列号表示背包的重量。单元格中的数字表示背包中最大价值。当物品只有一件时,当物品重量大于背包容量,不能装下,反之,能装下。如下图,物品重量为 1。无论何种规格容量的背包都能装下(假设背包的容量至少为 1)。

c++解决01背包问题,C++编程之美,背包,c++,0-1背包,回溯算法,动态规划

  • 如下图,当增加重量为 2 的物品后,当背包的容量为 1 时,不能装下物品,则最大值为同容量背包中已经有的最大值。

c++解决01背包问题,C++编程之美,背包,c++,0-1背包,回溯算法,动态规划

但对容量为 2的背包而言,恰好可以放入新物品,此时背包中的最大价值就会有 2 个选择,一是把物品 2 放进去,背包中的价值为 3。二是保留背包已有的价值4。然后,在两者中选择最大值 4

c++解决01背包问题,C++编程之美,背包,c++,0-1背包,回溯算法,动态规划

当背包容量是 3时,物品2也是可以放进去的。此时背包的价值可以是当前物品的价值 3加上背包剩余容量3-2=1能存放的最大价值4,计算后值为 7。要把此值和不把物品放进去时原来的价值 4 之间进行最大值选择。

c++解决01背包问题,C++编程之美,背包,c++,0-1背包,回溯算法,动态规划

所以,对于背包问题,核心思想就是:

  • 如果物品能放进背包:则先计算出物品的价值加上剩余容量能存储的最大价值之和,再找到不把物品放进背包时背包中原有价值。最后在两者之间进行最大值选择。
  • 当物品不能放进背包:显然,保留背包中原来的最大价值信息。
2.3.3 编码实现
#include <iostream>
#include <vector>
using namespace std;
int main(int argc, char** argv) {
	//物品信息
	int goods[3][3]= { {1,4},{2,3} };
	//背包容量
	int bagWeight=0;
	cout<<"请输入背包容量:"<<endl;
	cin>>bagWeight;
	//状态表
	int db[4][bagWeight+1]= {0};
	for(int i=0; i<4; i++) {
		for(int j=0; j<bagWeight+1; j++) {
			db[i][j]=0;
		}
	}
	for(int w=1; w<4; w++) {
		for(int wt=1; wt<=bagWeight; wt++) {
			if( goods[w-1][0]>wt ) {
				//如果背包不能装下物品,保留背包上一次的结果
				db[w][wt]=db[w-1][wt];
			} else {
				//能装下,计算本物品价值和剩余容量的最大价值
				int val=goods[w-1][1] + db[w-1][ wt- goods[w-1][0] ];
				//背包原来的价值
				int val_= db[w-1][wt];
				//计算最大值
				db[w][wt]=val>val_?val:val_;
			}
		}
	}
	for(int i=1; i<3; i++) {
		for(int j=1; j<=bagWeight; j++) {
			cout<<db[i][j]<<"\t";
		}
		cout<<endl;
	}
	return 0;
}

输出结果:

c++解决01背包问题,C++编程之美,背包,c++,0-1背包,回溯算法,动态规划

3. 总结

本文主要讲解背包系列 中的0-1背包问题。0-1背包问题可以使用递归和动态规划方案得到其解。文章来源地址https://www.toymoban.com/news/detail-789516.html

到了这里,关于C++ 算法主题系列之集结0-1背包问题的所有求解方案的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 算法系列--动态规划--背包问题(1)--01背包介绍

    💕\\\"趁着年轻,做一些比较cool的事情\\\"💕 作者:Lvzi 文章主要内容:算法系列–动态规划–背包问题(1)–01背包介绍 大家好,今天为大家带来的是 算法系列--动态规划--背包问题(1)--01背包介绍 背包问题是动态规划中经典的一类问题,经常在笔试面试中出现,是非常 具有区分度 的题

    2024年04月16日
    浏览(56)
  • 算法系列--动态规划--背包问题(3)--完全背包介绍

    💕\\\"Su7\\\"💕 作者:Lvzi 文章主要内容:算法系列–动态规划–背包问题(3)–完全背包介绍 大家好,今天为大家带来的是 算法系列--动态规划--背包问题(3)--完全背包介绍 链接: 完全背包 可以发现完全背包问题和01背包问题还是特比相似的 分析: 完全背包问题 是 01背包问题 的推广

    2024年04月25日
    浏览(45)
  • C++ DP算法,动态规划——背包问题(背包九讲)

    有N件物品和一个容量为 V V V 的背包。放入第i件物品耗费的空间是 C i C_i C i ​ ,得到的价值是 W i W_i W i ​ 。 求解将哪些物品装入背包可使价值总和最大。 这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。 用子问题定义状态:即 F [ i , v ] F[i, v] F

    2024年02月16日
    浏览(51)
  • c++—0/1背包问题--贪心算法(详解)

    贪心算法的基本思想 •贪心算法的特点是每个阶段所作的选择都是局部最优的,它期望通过所作的局部最优选择产生出一个全局最优解。 贪心与动态规划: 与动态规划不同的是,贪心是 鼠目寸光 ; 动态规划是 统揽全局 。 贪心:每个阶段产生的都是局部最优解 贪心算法的

    2024年02月04日
    浏览(41)
  • C++算法初级11——01背包问题(动态规划2)

    辰辰采药 辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时

    2024年02月02日
    浏览(50)
  • 01背包问题的多种求解

    问题描述: 有一个容量为V的背包,还有n个物体。现在忽略物体实际几何形状,我们认为只要背包的剩余容量大于等于物体体积,那就可以装进背包里。每个物体都有两个属性,即体积w和价值v。 使物品装入背包的价值最大。 2.0-1 背包问题的解决思路     1. 方法一:枚举法

    2024年02月16日
    浏览(33)
  • 基于回溯法求解0-1背包问题

    一、实验目的 1.掌握基于回溯的算法求解0-1背包问题的原理。 2.掌握编写回溯法求解0-1背包问题函数的具体步骤并理解回溯法的核心思想以及其求解过程。 3.掌握子集树以及其他几种解空间树的回溯方法并具备运用回溯算法的思想设计算法并用于求解其他实际应用问题的能力

    2024年02月08日
    浏览(46)
  • HJ16 购物单 - 分组背包问题求解

    题目链接参考 HJ16 购物单_牛客题霸_牛客网 这道题需要通过动态规划来求解,首先先通过 ChatGPT 了解下如何 利用动态规划求解01背包问题和完全背包问题 ,以下是 ChatGPT 的答案 动态规划是什么? 动态规划(Dynamic Programming,DP)是一种常用的算法思想,用于解决多阶段决策问

    2023年04月21日
    浏览(40)
  • 用栈求解迷宫问题的所有路径及最短路径程序(纯c语言)

    参考了这个博客 学校作业,在各种地方搜了半天,看别人的要么就是有点错,要么就是很复杂用了不少我不知道的库,还要么就是只求了一条路径,还要么就是用了c++没学过。 写了半天,写出了一个应该是比较简单的方法,应该是还能优化,不过作业能跑就行,懒得搞了。

    2023年04月12日
    浏览(40)
  • 背包问题之0-1背包算法详解

    有5件物品和1个背包,背包最多只能装下8公斤的物品。怎样选择物品,使得背包能装下并且得到的价值最大。物品的重量和价值如下所示: 物品1: 6公斤    价值48元 物品2: 1公斤   价值7元 物品3: 5公斤   价值40元 物品4: 2公斤    价值12元 物品5: 1公斤   价值8元 可以先考虑

    2023年04月09日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包