YOLOv8之C2f模块——与YOLOv5的C3模块对比

这篇具有很好参考价值的文章主要介绍了YOLOv8之C2f模块——与YOLOv5的C3模块对比。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、源码对比

  YOLOv8完整工程代码下载:ultralytics/ultralytic
  C2f模块源码在ultralytics/nn/modules.py下,源码如下:

class C2f(nn.Module):
    # CSP Bottleneck with 2 convolutions
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, e=1.0) for _ in range(n))

    def forward(self, x):
        y = list(self.cv1(x).chunk(2, 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

    def forward_split(self, x):
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

  YOLOv5的完整工程代码下载:ultralytic/yolov5
  C3模块源码在models/common.py下,源码如下:

class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
  • C2f模块和C3模块的对外接口保持一致,都是(ch_in, ch_out, number, shortcut, groups, expansion),方便在yolov5中直接调用C2f模块。
  • C2f模块默认不使用shortcut连接,C3模块默认使用shortcut连接,但二者在网络结构中shortcut的位置无差别,即都是在Backbone中使用shortcut连接,在Head中不使用shortcut连接,代码的调用格式有差别。

c2f模块,YOLO,python,深度学习c2f模块,YOLO,python,深度学习

二、结构图对比

c2f模块,YOLO,python,深度学习

图2-1 C3模块结构图

c2f模块,YOLO,python,深度学习文章来源地址https://www.toymoban.com/news/detail-789660.html

图2-2 C2f模块结构图
  • C2f模块参考了C3模块以及ELAN的思想进行的设计,让YOLOv8可以在保证轻量化的同时获得更加丰富的梯度流信息。

到了这里,关于YOLOv8之C2f模块——与YOLOv5的C3模块对比的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包