GPT实战系列-简单聊聊LangChain搭建本地知识库准备

这篇具有很好参考价值的文章主要介绍了GPT实战系列-简单聊聊LangChain搭建本地知识库准备。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

GPT实战系列-简单聊聊LangChain搭建本地知识库准备

GPT实战系列-简单聊聊LangChain搭建本地知识库准备,GPT实战系列,langchain,GPT,embedding,text2vector,本地知识库,Huggingface,OpenAI

LangChain 是一个开发由语言模型驱动的应用程序的框架,除了和应用程序通过 API 调用, 还会:

  • 数据感知 : 将语言模型连接到其他数据源

  • 具有代理性质 : 允许语言模型与其环境交互

LLM大模型相关文章:

GPT实战系列-简单聊聊LangChain

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-大话LLM大模型训练

GPT实战系列-探究GPT等大模型的文本生成

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

LangChain是什么?

 

构建本地的行业、专家知识库,就需要LangChain 支持常见角色和用途。

  • 个人助理(personal assistants) : 主要的 LangChain 使用用例。个人助理需要采取行动、记住交互并具有您的有关数据的知识。

  • 问答(question answering) : 第二个重大的 LangChain 使用用例。仅利用一些文档中的信息来构建答案,回答特定文档中的问题。

除LangChain外,还需要什么?

首先需要把文本转换为文本向量,即自然语言处理常常要用的Embedding技术,Text2Vector。

常见的Embedding接口有 OpenAI,Sentence Transformers,BGE, Huggingface,ModelScope,TensorFlowHub

例如,OpenAI提供接口,需要翻墙:

from langchain.embeddings import OpenAIEmbeddings
​
embeddings = OpenAIEmbeddings()

SentenceTransformer的接口:

from langchain.embeddings import HuggingFaceEmbeddings, SentenceTransformerEmbeddings
​
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
# Equivalent to SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")

Huggingface接口,直接下载需要翻墙。

没有梯子怎么办?如有需要可以单独写篇。

from langchain.embeddings import HuggingFaceEmbeddings
​
embeddings = HuggingFaceEmbeddings()

ModelScope,非常适合国内,不用翻墙。

from langchain.embeddings import ModelScopeEmbeddings
​
model_id = "damo/nlp_corom_sentence-embedding_english-base"
​
embeddings = ModelScopeEmbeddings(model_id=model_id)

Tensorflow hub,需要安装tensorflow组件。现在用pytorch,就很少使用tensorflow。

from langchain.embeddings import TensorflowHubEmbeddings
​
embeddings = TensorflowHubEmbeddings()
​

One more thing

文本向量直接比较就不足以推广,还需要加上向量数据库。

向量数据库也有很多,选几个熟悉的,比如FAISS,Chroma,Milvus,Redis,Deep Lake等等。

例如 FAISS

from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.document_loaders import TextLoader
​
from langchain.document_loaders import TextLoader
​
loader = TextLoader("../../../state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
​
embeddings = OpenAIEmbeddings()
​
db = FAISS.from_documents(docs, embeddings)
​

后面基于LangChain做一些好玩的本地专家库测试吧。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End

 


GPT专栏文章:

GPT实战系列-简单聊聊LangChain

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF 

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客文章来源地址https://www.toymoban.com/news/detail-789672.html

到了这里,关于GPT实战系列-简单聊聊LangChain搭建本地知识库准备的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • LangChain入门(四)-构建本地知识库问答机器人

    在这个例子中,我们会介绍如何从我们本地读取多个文档构建知识库,并且使用 Openai API 在知识库中进行搜索并给出答案。 目录 一、安装向量数据库chromadb和tiktoken 二、使用案例 三、embeddings持久化 四、在线的向量数据库Pinecone 一、安装向量数据库chromadb和tiktoken    其中h

    2024年02月05日
    浏览(60)
  • 基于GPT-4和LangChain构建云端定制化PDF知识库AI聊天机器人

    参考: GitHub - mayooear/gpt4-pdf-chatbot-langchain: GPT4 LangChain Chatbot for large PDF docs 使用新的GPT-4 api为多个大型PDF文件构建chatGPT聊天机器人。 使用的技术栈包括LangChain, Pinecone, Typescript, Openai和Next.js。LangChain是一个框架,可以更容易地构建可扩展的AI/LLM大语言模型应用程序和聊天机器

    2024年02月11日
    浏览(50)
  • AIGC:【LLM(四)】——LangChain+ChatGLM:本地知识库问答方案

    LangChain+ChatGLM项目(https://github.com/chatchat-space/langchain-ChatGLM)实现原理如下图所示 (与基于文档的问答 大同小异,过程包括:1 加载文档 - 2 读取文档 - 3/4文档分割 - 5/6 文本向量化 - 8/9 问句向量化 - 10 在文档向量中匹配出与问句向量最相似的top k个 - 11/12/13 匹配出的文本作为上下

    2024年02月13日
    浏览(54)
  • Chinese-LangChain:基于ChatGLM-6b+langchain实现本地化知识库检索与智能答案生成

    Chinese-LangChain:中文langchain项目,基于ChatGLM-6b+langchain实现本地化知识库检索与智能答案生成 https://github.com/yanqiangmiffy/Chinese-LangChain 俗称:小必应,Q.Talk,强聊,QiangTalk 🐯 2023/04/19 引入ChuanhuChatGPT皮肤 📱 2023/04/19 增加web search功能,需要确保网络畅通! 📚 2023/04/18 webui增加知

    2024年02月06日
    浏览(58)
  • 从零实现Transformer、ChatGLM-6B、LangChain+LLM的本地知识库问答

    最近一直在做类ChatGPT项目的部署 微调,关注比较多的是两个:一个LLaMA,一个ChatGLM,会发现有不少模型是基于这两个模型去做微调的,说到微调,那具体怎么微调呢,因此又详细了解了一下微调代码,发现微调LLM时一般都会用到Hugging face实现的Transformers库的Trainer类 从而发现

    2024年02月08日
    浏览(53)
  • Langchain-Chatchat大语言模型本地知识库的踩坑、部署、使用

    Langchain-Chatchat是一个基于ChatGLM大语言模型与Langchain应用框架实现,开源、可离线部署的检索增强生成(RAG)大模型的本地知识库问答应用项目。 GitHub: https://github.com/chatchat-space/Langchain-Chatchat 本项目实现原理如下图所示,过程包括加载文件 - 读取文本 - 文本分割 - 文本向量化

    2024年02月04日
    浏览(72)
  • 【ChatGLM】基于 ChatGLM-6B + langchain 实现本地化知识库检索与智能答案生成: 中文 LangChain 项目的实现开源工作

      目录 【ChatGLM】基于 ChatGLM-6B + langchain 实现本地化知识库检索与智能答案生成: 中文 LangChain 项目的实现开源工作 1.克隆源代码:

    2024年02月11日
    浏览(46)
  • 从LangChain+LLM的本地知识库问答到LLM与知识图谱、数据库的结合

    过去半年,随着ChatGPT的火爆,直接带火了整个LLM这个方向,然LLM毕竟更多是基于过去的经验数据预训练而来,没法获取最新的知识,以及各企业私有的知识 为了获取最新的知识,ChatGPT plus版集成了bing搜索的功能,有的模型则会调用一个定位于 “链接各种AI模型、工具”的

    2024年02月12日
    浏览(69)
  • 基于LangChain+LLM的本地知识库问答:从企业单文档问答到批量文档问答

    过去半年,随着ChatGPT的火爆,直接带火了整个LLM这个方向,然LLM毕竟更多是基于过去的经验数据预训练而来,没法获取最新的知识,以及各企业私有的知识 为了获取最新的知识,ChatGPT plus版集成了bing搜索的功能,有的模型则会调用一个定位于 “链接各种AI模型、工具”的

    2024年02月07日
    浏览(58)
  • 【LangChain学习】基于PDF文档构建问答知识库(三)实战整合 LangChain、OpenAI、FAISS等

    接下来,我们开始在web框架上整合 LangChain、OpenAI、FAISS等。 因为项目是基于PDF文档的,所以需要一些操作PDF的库,我们这边使用的是PyPDF2 传入 pdf 文件路径,返回 pdf 文档的文本内容。 首先我们需要将第一步拿到的本文内容拆分,我们使用的是 RecursiveCharacterTextSplitter ,默认

    2024年02月13日
    浏览(73)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包