基于自适应遗传算法的车间调度matlab仿真,可以任意调整工件数和机器数,输出甘特图

这篇具有很好参考价值的文章主要介绍了基于自适应遗传算法的车间调度matlab仿真,可以任意调整工件数和机器数,输出甘特图。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

4.1 编码与初始化

4.2 适应度函数

4.3 遗传操作

4.4 自适应机制

4.5 终止条件

5.完整程序


1.程序功能描述

        基于自适应遗传算法的车间调度matlab仿真,可以任意调整工件数和机器数,输出甘特图和优化算法的适应度收敛曲线。

2.测试软件版本以及运行结果展示

MATLAB2022a版本运行

基于自适应遗传算法的车间调度matlab仿真,可以任意调整工件数和机器数,输出甘特图,MATLAB程序开发,# 优化,matlab,甘特图,自适应遗传算法,车间调度

基于自适应遗传算法的车间调度matlab仿真,可以任意调整工件数和机器数,输出甘特图,MATLAB程序开发,# 优化,matlab,甘特图,自适应遗传算法,车间调度

基于自适应遗传算法的车间调度matlab仿真,可以任意调整工件数和机器数,输出甘特图,MATLAB程序开发,# 优化,matlab,甘特图,自适应遗传算法,车间调度

基于自适应遗传算法的车间调度matlab仿真,可以任意调整工件数和机器数,输出甘特图,MATLAB程序开发,# 优化,matlab,甘特图,自适应遗传算法,车间调度

基于自适应遗传算法的车间调度matlab仿真,可以任意调整工件数和机器数,输出甘特图,MATLAB程序开发,# 优化,matlab,甘特图,自适应遗传算法,车间调度

基于自适应遗传算法的车间调度matlab仿真,可以任意调整工件数和机器数,输出甘特图,MATLAB程序开发,# 优化,matlab,甘特图,自适应遗传算法,车间调度

3.核心程序

........................................................
%工件数
Num1 = 8;   
%机器数
Num2 = 2;                  
%产生时间矩阵
T    = 0.4+rand(Num2,Num1);                      
%种群
Npop = 100;    
%最大进化代数
Iters= 200;                        
 
%初始种群
Pop_n       = round(sqrt(Npop));                   
Pop_s       = ceil(Npop/Pop_n);              
Npop        = Pop_s*Pop_n;                   
[Xs,ff]     = func_initial(T,Npop);

fout        = zeros(Iters,1);                                             
for i = 1:Iters
    i
    [ff,I] = sort(ff,'descend');
    Xs     = Xs(I,:);
    Pmax   = Xs(1,:);
    Fmax   = ff(1);

    for j = 1:Pop_n
        %子种群
        Pops       = Xs(j:Pop_n:end,:);            
        ff_        = ff(j:Pop_n:end,:);
        [Popss,F3] = func_GA(T,Pops,ff_,Pmax,Fmax);
        Xs(j:Pop_n:end,:) = Popss;
        ff(j:Pop_n:end,:) = F3;
    end
    %进化
    [Xsolve,ybest] = func_Eval(Xs,ff);
    fout(i) = -ybest;
end

 
[Fouts,Etime] = func_fitness(T,Xsolve); 

figure
%开始
Stime = Etime-T(:,Xsolve);                                 
fval  = -Fouts;
M1    = size(T,1);                               %机器数
NX    = length(Xsolve);                          %工件数

figure;
plot(1:Iters,fout(1:end),'b-o'); 
grid on;
xlabel('进化代数'); 
ylabel('适应度');

19

4.本算法原理

       车间调度问题是一类典型的组合优化问题,旨在确定一组工件在一组机器上的加工顺序,以优化某些性能指标,如最小化完工时间、延迟时间等。自适应遗传算法(Adaptive Genetic Algorithm, AGA)是一种启发式搜索算法,通过模拟生物进化过程中的遗传、变异、选择和自然选择等机制来求解优化问题。

4.1 编码与初始化

       在自适应遗传算法中,首先需要定义一种编码方式来表示问题的解。对于车间调度问题,通常采用基于工件的编码方式,即每个基因代表一个工件,基因的顺序代表工件的加工顺序。然后,随机生成一组初始解作为初始种群。

4.2 适应度函数

        适应度函数用于评价每个解的质量。对于车间调度问题,适应度函数通常与要优化的性能指标相关。例如,如果要最小化完工时间,适应度函数可以是完工时间的倒数,或者直接使用完工时间的负值。

4.3 遗传操作

       遗传操作包括选择、交叉和变异。选择操作根据每个解的适应度值选择优秀的解进入下一代。交叉操作通过交换两个解的部分基因来生成新的解。变异操作通过随机改变某个解的一个或多个基因来引入新的多样性。

选择操作:常见的选择策略有轮盘赌选择、锦标赛选择等。以轮盘赌选择为例,每个解被选中的概率与其适应度值成正比。

交叉操作:对于基于工件的编码方式,可以采用如顺序交叉(Order Crossover, OX)、部分匹配交叉(Partially Matched Crossover, PMX)等交叉方法。

变异操作:常见的变异操作包括交换变异、插入变异等。

4.4 自适应机制

       自适应遗传算法的关键在于其自适应机制,即算法能够根据种群的进化状态动态调整遗传操作的参数,如交叉概率、变异概率等。这种自适应机制有助于提高算法的搜索效率和全局寻优能力。

4.5 终止条件

算法终止条件可以是达到最大迭代次数、解的质量满足要求、种群多样性低于阈值等。

5.完整程序

VVV文章来源地址https://www.toymoban.com/news/detail-790182.html

到了这里,关于基于自适应遗传算法的车间调度matlab仿真,可以任意调整工件数和机器数,输出甘特图的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Matlab复现】基于自适应遗传算法的分布式电源优化配置

    目录 1 主要内容 ​2 部分程序​ 3 程序结果 4 下载链接 该程序采用自适应遗传算法优化分布式电源的配置问题,以投资运行成本、网络损耗成本、购电成本和碳排放成本之和作为优化目标,潮流计算采用前推回代法进行计算,程序不止复现了参考文献的33节点系统,同时也

    2024年02月01日
    浏览(46)
  • 【水光互补优化调度】基于非支配排序遗传算法的多目标水光互补优化调度(Matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 1.1 水光互补 1.2 水光互补模型——目标函数和约束条件

    2024年02月01日
    浏览(85)
  • 基于遗传算法求解机器人栅格地图路径规划问题matlab仿真

     ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进, 代码获取、论文复现及科研仿真合作可私信。 🍎个人主页:Matlab科研工作室 🍊个人信条:格物致知。 更多Matlab完整代码及仿真定制内容点击👇 智能优化算法       神经网络预测       雷达通信    

    2024年01月22日
    浏览(60)
  • 基于GA遗传优化的混合发电系统优化配置算法matlab仿真

    目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 4.1遗传算法基本原理 4.2 混合发电系统优化配置问题 4.3 基于GA的优化配置算法 染色体编码 初始种群生成 适应度函数 选择操作 交叉操作 变异操作 5.完整工程文件       基于GA遗传优化的混合发电系统优化配置

    2024年01月25日
    浏览(48)
  • 基于GA-PSO遗传粒子群混合优化算法的VRPTW问题求解matlab仿真

    目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 4.1 遗传算法(GA)基本原理 4.2 粒子群优化(PSO)基本原理 4.3 算法优化策略 5.完整程序        VRPTW是车辆路径问题(VRP)的一个扩展,它在基本的车辆路径问题上增加了对客户服务时间窗的考虑

    2024年02月02日
    浏览(77)
  • 基于遗传算法GA的机器人栅格地图最短路径规划,可以自定义地图及起始点(提供MATLAB代码)

    遗传算法是一种基于生物进化原理的优化算法,常用于求解复杂问题。在机器人栅格地图最短路径规划中,遗传算法可以用来寻找最优路径。 遗传算法的求解过程包括以下几个步骤: 1. 初始化种群:随机生成一组初始解,每个解表示机器人在栅格地图上的路径。 2. 评估适应

    2024年03月11日
    浏览(117)
  • 超详细 | 遗传-粒子群自适应优化算法及其实现(Matlab)

    作者在前面的文章中介绍了两种经典的优化算法——遗传算法(GA)和粒子群算法(PSO),这些智能优化算法解决问题的方式和角度各不相同,都有各自的适用域和局限性,对智能优化算法自身做的改进在算法性能方面得到了一定程度的提升,但算法缺点的解决并不彻底。 为了克服

    2024年01月21日
    浏览(78)
  • 【MATLAB源码-第141期】基于matlab的免疫优化算法在物流配送中心选址应用仿真,输出选址图以及算法适应度曲线。

    免疫优化算法在物流配送中心选址中的应用是一个集成了信息科学、生物学原理和运筹学的跨学科研究领域。本文旨在探讨免疫优化算法在物流配送中心选址问题中的应用,包括算法的基本原理、模型构建、算法实现及其在实际物流配送中心选址问题中的应用案例分析。 一、

    2024年02月22日
    浏览(53)
  • Matlab实现遗传算法仿真(附上40个仿真源码)

    字节流抽象基类 InputStream:这个抽象类是表示字节输入流的所有类的超类 OutputStream:这个抽象类是表示字节输出流的所有类的超类 子类名特点:子类名称都是以其父类名作为子类名的后缀 4.1 IO流概述和分类 IO流概述 : IO: 输入/输出(Input/Output) 流:是一种抽象概念,是对数据

    2024年02月14日
    浏览(41)
  • Matlab实现遗传算法仿真(附上20个仿真源码)

    遗传算法(Genetic Algorithm,GA)是一种基于生物进化理论的优化算法,通过模拟自然界中的遗传过程,来寻找最优解。 在遗传算法中,每个解被称为个体,每个个体由一组基因表示,每个基因是解空间中的一个变量。算法通过不断地交叉、变异、选择等操作,来寻找最优解。

    2024年02月08日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包