线性代数基础【4】线性方程组

这篇具有很好参考价值的文章主要介绍了线性代数基础【4】线性方程组。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

第四章 线性方程组

一、线性方程组的基本概念与表达形式

线性代数基础【4】线性方程组,考研数学,# 线性代数,线性代数,高等数学,线性方程组

线性代数基础【4】线性方程组,考研数学,# 线性代数,线性代数,高等数学,线性方程组

二、线性方程组解的基本定理

定理1 设A为mXn矩阵,则

(1)齐次线性方程组AX=0 只有零解的充分必要条件是r(A)=n;

(2)齐次线性方程组AX=0 有非零解(或有无数个解)的充分必要条件是r(A)<n

推论1 设A为n阶矩阵,则

(1)齐次线性方程组AX=0只有零解的充分必要条件是|A|≠0;

(2)齐次线性方程组AX=0有非零解(或有无数个解)的充分必要条件是|A|=0

注意:

①齐次线性方程组系数矩阵的秩相当于方程组中约束条件的个数,当 r(A)=n 时,表示齐次线性方程组中未知数的个数与约束条件的个数相等,即没有自由变量,故齐次线性方程组只有零解;当 r(A)<n 时,表示齐次线性方程组中约束条件的个数小于未知数的个数,即有自由变量,故齐次线性方程组有无数个解

线性代数基础【4】线性方程组,考研数学,# 线性代数,线性代数,高等数学,线性方程组

定理2 设A为mxn矩阵,增广矩阵A增=(A:b),则

(1)非齐次线性方程组AX=b 有解的充分必要条件是r(A增)=r(A),其中当r(A增)=r(A)=n时,非齐次线性方程组AX=b有唯一解;当r(增A)=r(A)<n 时,非齐次线性方程组AX=b有无数个解;

(2)非齐次线性方程组AX=b 无解的充分必要条件是r(A增)≠r(A)

推论2 设A是n阶矩阵,则

(1)非齐次线性方程组AX=b 有解的充分必要条件是r(A增)=r(A)其中当|A|≠0时方程组有唯一解;当|A|=0 时,方程组有无数个解;

(2)非齐次线性方程组AX=b 无解的充分必要条件是r(A增)≠r(A)

注意:

线性代数基础【4】线性方程组,考研数学,# 线性代数,线性代数,高等数学,线性方程组

线性代数基础【4】线性方程组,考研数学,# 线性代数,线性代数,高等数学,线性方程组

三、线性方程组解的结构

1.设X1,X2,…,Xs为齐次线性方程组AX=0的一组解,则k1X1,+k2X2+…+ksxs也为齐次线性方程组AX=0的解,其中k1,k2,…,ks,为任意常数

2.设η0为非齐次线性方程组AX=b 的一个解,X1,X2,…,Xn为齐次线性方程组AX=0的一组解,则k1X1+k2X2+…+ksxs+η0为非齐次线性方程组 AX=b 的解

3.设η1,η2为非齐次线性方组AX=b 的两个解,则η2-η1为齐次性方组AX=0的一个解.

4.设X1,X2,…,Xs,为非齐次线性方程组AX=b的一组解,则k1X1+k2X2+…+ksXs为AX=b的解的充分必要条件是k1+k2+…+ks=1.

5.设η1,η2,…,ηs,为非齐次线性方程组AX=b 的一组解,则 k1η1+k2η2+···+ksηs,为齐次线性方程组AX=0 的解的充分必要条件是 k1+k2+…+ks=0.

四、线性方程组的组解

1.齐次线性方程组 AX=0 的基础解系与通解

(1)基础解系——设r(A)=r<n,则AX=0 所有解构成的解向量组的极大线性无关组称为方程组AX=0的一个基础解系,当r(A)=r时,AX=0的基础解系所含的线性无关的解向量的个数为n-r个

求齐次线性方程组的基础解系时,把其系数矩阵通过初等行变换进行阶梯化(系数矩阵进行初等行变换相当于方程组的同解变形),每行第一个非零元素所在的列对应的未知数是约束变量,其余变量为自由变量,从而可以确定基础解系(最好把每行第一个非零元素化为1(归一性),且其所在的列其余元素都化为零(排他性))

如:对齐次线性方程组AX=0的系数矩阵A 进行初等行变换,化为

线性代数基础【4】线性方程组,考研数学,# 线性代数,线性代数,高等数学,线性方程组

则r(A)=3<5,方程组AX=0的基础解系含有n-r=5-3=2个线性无关的解向量,其中x1,x2,x3为约束变量,x4,x5为自由变量,(x4,x5)分别取(1,0)和(0,1),则基础解系为

ξ1=(-2,1,一3,1,0)^T ξ2=(3,-4,2,0,1)^T

又如:对齐次线性方程组AX=0的系数矩阵A进行初等行变换,化为

线性代数基础【4】线性方程组,考研数学,# 线性代数,线性代数,高等数学,线性方程组

则r(A)=2<5,方程组AX=0的基础解系含有n-r=5-2=3 个线性无关的解向量,其中x1,x3为约束变量,x2,x4,x5为自由变量,(x2,x4,x5)分别取(1,0,0),(0,1,0)及(0,0,1),则基础解系为

ξ1=(1,1;0,0,0)^T ξ2=(-2,0,-1,1,0)^T ξ3=(-4,0,2,0,1)^T

注意:

设A为mXn 矩阵且r(A)=r<n,所谓AX=0的基础解系,即满足如下三个条件的向量组:

(1)该向量组中每个向量都是AX=0的解;

(2)该向量组线性无关:

(3)该向量组所含解向量的个数等于n-r

(2)通解——设ξ1,ξ2,…,ξn-r为齐次线性方程组AX=0的一个基础解系,则称k1ξ1+k2ξ12+…+k(n-r)ξ(n-r),为齐次线性方程组AX=0的通解,其中k1,k2,…,k(n-r)为任意常数.

2.非齐次线性方程组AX=b的通解

设r(A)=r(A增)=r<n,且ξ1,ξ2,…,ξ(n-r)=b的导出方程组AX-0的一个基础解系,η0为AX=b 的一个解,则AX=b的通解为

k1ξ1+k2ξ2+…+k(n-r)ξ(n-r)+η0,其中k1,k2,…,k(n-r),为任意常数

注意:

线性代数基础【4】线性方程组,考研数学,# 线性代数,线性代数,高等数学,线性方程组

五、线性方程组的理论延伸

定理1 设A是mXn矩阵,B是nXs矩阵,若AB=0则B的列向量组为方程组AX=0的解

定理2 设方程组AX=0与BX=0为同解方程组,则r(A)=r(B),反之不对

定理3 设方程组AX=0的解为BX=0的解,则r(A)≥r(B)

注意:

1.若方程组AX=0的解为方程组BX=0的解,方程组BX=0的解不全是方程组AX=0的解,则r(A)>r(B)

2.若方程组AX=0的解为方程组 BX=0的解,且r(A)=r(B),则方程组AX=0与方程组BX=0同解

定理4

线性代数基础【4】线性方程组,考研数学,# 线性代数,线性代数,高等数学,线性方程组文章来源地址https://www.toymoban.com/news/detail-790266.html

到了这里,关于线性代数基础【4】线性方程组的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 线性代数(三) 线性方程组

    如何利用行列式,矩阵求解线性方程组。 用矩阵方程表示 齐次线性方程组:Ax=0; 非齐次线性方程组:Ax=b. 可以理解 齐次线性方程组 是特殊的 非齐次线性方程组 如何判断线性方程组的解 其中R(A)表示矩阵A的秩 B表示A的增广矩阵 n表示末知数个数 增广矩阵 矩阵的秩 秩r= 未知

    2024年02月13日
    浏览(40)
  • 线性代数之线性方程组

    目录 文章目录 一、具体型方程组  1. 解线性方程组     1.1 齐次线性方程组          1.1.1 解向量及其性质          1.1.2基础解系         1.1.3齐次线性方程组有非零解的充要条件及通解  1.2 非齐次线性方程组            1.2.1克拉默法则         1.2.2几个相关说法的等

    2024年02月20日
    浏览(36)
  • 【线性代数】通过矩阵乘法得到的线性方程组和原来的线性方程组同解吗?

    如果你进行的矩阵乘法涉及一个线性方程组 Ax = b,并且你乘以一个可逆矩阵 M,且产生新的方程组 M(Ax) = Mb,那么这两个系统是等价的;它们具有相同的解集。这是因为可逆矩阵的乘法可以视为一个可逆的线性变换,不会改变方程解的存在性或唯一性。 换句话说,如果你将原

    2024年02月03日
    浏览(44)
  • 线性代数:齐次线性方程组学习笔记

    齐次线性方程组是指所有方程的常数项均为零的线性方程组,即形如 A x = 0 Ax=0 A x = 0 的方程组。 其中,矩阵 A A A 是一个 m × n m times n m × n 的矩阵,向量 x x x 是一个 n n n 维列向量, 0 mathbf{0} 0 是一个 m m m 维零向量。 齐次线性方程组有以下性质: 1. 性质1 齐次线性方程组的

    2024年01月20日
    浏览(35)
  • 线性代数 第四章 线性方程组

    一、矩阵形式 经过初等行变换化为阶梯形矩阵。当,有解;当,有非零解。 有解,等价于 可由线性表示 克拉默法则:非齐次线性方程组中,系数行列式,则方程组有唯一解,且唯一解为 其中是中第i列元素(即的系数)替换成方程组右端的常数项所构成的行列式。 二、向量

    2024年02月07日
    浏览(39)
  • 线性代数(第四章)线性方程组

    4.1 线性方程组 ● 由二元一次方程的消元法,交换两个方程,用非零数乘以某个方程,某方程乘以k倍加到另一方程。这个与矩阵的初等行变换相似。 ● 将上面方程组的未知数去掉,将系数写在一个矩阵中。就可以表示该方程组。并可以通过矩阵的初等行变换求解。 4.2 线性

    2024年04月26日
    浏览(27)
  • 线性代数(三) 线性方程组&向量空间

    如何利用行列式,矩阵求解线性方程组。 用矩阵方程表示 齐次线性方程组:Ax=0; 非齐次线性方程组:Ax=b. 可以理解 齐次线性方程组 是特殊的 非齐次线性方程组 如何判断线性方程组的解 其中R(A)表示矩阵A的秩 B表示A的增广矩阵 n表示末知数个数 增广矩阵 矩阵的秩 秩r= 未知

    2024年02月13日
    浏览(28)
  • 线性代数思维导图--线性代数中的线性方程组(1)

    1.解线性方程组 2.线性方程组解的情况 3.线性方程组的两个基本问题 1.阶梯型矩阵性质 2.简化阶梯型矩阵(具有唯一性) 3.行化简算法 4.线性方程组的解 1.R^2中的向量 2.R^2中的几何表示 3.R^n中的向量 4.线性组合与向量方程 5.span{v},span{u,v}的几何解释 1.定义 2.定理 3.解的存在性

    2024年02月02日
    浏览(56)
  • 机器学习-线性代数-4-解方程组

    对于如下方程组: a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 . . . . a m 1 x 1 + a m 2 x 2 + . . . + a m n x n = b m a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b1\\\\ a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = b2\\\\....\\\\a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n = bm a 11 ​ x 1 ​ + a 12 ​ x 2 ​ + ... +

    2024年02月12日
    浏览(30)
  • 线性代数代码实现(七)求解线性方程组(C++)

    前言:         上次博客,我写了一篇关于定义矩阵除法并且代码的文章。矩阵除法或许用处不大,不过在那一篇文章中,我认为比较好的一点是告诉了大家一种计算方法,即:若矩阵  已知且可逆,矩阵  已知,并且  ,求解矩阵 B 。我认为这种初等行变换的方法还是挺

    2023年04月23日
    浏览(33)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包