leetcode动态规划(零钱兑换II、组合总和 Ⅳ)

这篇具有很好参考价值的文章主要介绍了leetcode动态规划(零钱兑换II、组合总和 Ⅳ)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

518.零钱兑换II

给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。

示例 1:

输入: amount = 5, coins = [1, 2, 5]
输出: 4
解释: 有四种方式可以凑成总金额:

5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
示例 2:

输入: amount = 3, coins = [2]
输出: 0
解释: 只用面额2的硬币不能凑成总金额3。
示例 3:

输入: amount = 10, coins = [10]
输出: 1
注意,你可以假设:

0 <= amount (总金额) <= 5000
1 <= coin (硬币面额) <= 5000
硬币种类不超过 500 种
结果符合 32 位符号整数
思路
这是一道典型的背包问题,一看到钱币数量不限,就知道这是一个完全背包。

对完全背包还不了解的同学,可以看这篇:动态规划:关于完全背包,你该了解这些!(opens new window)

但本题和纯完全背包不一样,纯完全背包是凑成背包最大价值是多少,而本题是要求凑成总金额的物品组合个数!

注意题目描述中是凑成总金额的硬币组合数,为什么强调是组合数呢?

例如示例一:

5 = 2 + 2 + 1

5 = 2 + 1 + 2

这是一种组合,都是 2 2 1。

如果问的是排列数,那么上面就是两种排列了。

组合不强调元素之间的顺序,排列强调元素之间的顺序。 其实这一点我们在讲解回溯算法专题的时候就讲过了哈。

那我为什么要介绍这些呢,因为这和下文讲解遍历顺序息息相关!

回归本题,动规五步曲来分析如下:

确定dp数组以及下标的含义
dp[j]:凑成总金额j的货币组合数为dp[j]

确定递推公式
dp[j] 就是所有的dp[j - coins[i]](考虑coins[i]的情况)相加。

所以递推公式:dp[j] += dp[j - coins[i]];

这个递推公式大家应该不陌生了,我在讲解01背包题目的时候在这篇494. 目标和 (opens new window)中就讲解了,求装满背包有几种方法,公式都是:dp[j] += dp[j - nums[i]];

dp数组如何初始化
首先dp[0]一定要为1,dp[0] = 1是 递归公式的基础。如果dp[0] = 0 的话,后面所有推导出来的值都是0了。

那么 dp[0] = 1 有没有含义,其实既可以说 凑成总金额0的货币组合数为1,也可以说 凑成总金额0的货币组合数为0,好像都没有毛病。

但题目描述中,也没明确说 amount = 0 的情况,结果应该是多少。

这里我认为题目描述还是要说明一下,因为后台测试数据是默认,amount = 0 的情况,组合数为1的。

下标非0的dp[j]初始化为0,这样累计加dp[j - coins[i]]的时候才不会影响真正的dp[j]

dp[0]=1还说明了一种情况:如果正好选了coins[i]后,也就是j-coins[i] == 0的情况表示这个硬币刚好能选,此时dp[0]为1表示只选coins[i]存在这样的一种选法。

确定遍历顺序
本题中我们是外层for循环遍历物品(钱币),内层for遍历背包(金钱总额),还是外层for遍历背包(金钱总额),内层for循环遍历物品(钱币)呢?

我在动态规划:关于完全背包,你该了解这些! (opens new window)中讲解了完全背包的两个for循环的先后顺序都是可以的。

但本题就不行了!

因为纯完全背包求得装满背包的最大价值是多少,和凑成总和的元素有没有顺序没关系,即:有顺序也行,没有顺序也行!

而本题要求凑成总和的组合数,元素之间明确要求没有顺序。

所以纯完全背包是能凑成总和就行,不用管怎么凑的。

本题是求凑出来的方案个数,且每个方案个数是为组合数。

那么本题,两个for循环的先后顺序可就有说法了。

我们先来看 外层for循环遍历物品(钱币),内层for遍历背包(金钱总额)的情况。

代码如下:

for (int i = 0; i < coins.size(); i++) { // 遍历物品
    for (int j = coins[i]; j <= amount; j++) { // 遍历背包容量
        dp[j] += dp[j - coins[i]];
    }
}

假设:coins[0] = 1,coins[1] = 5。

那么就是先把1加入计算,然后再把5加入计算,得到的方法数量只有{1, 5}这种情况。而不会出现{5, 1}的情况。

所以这种遍历顺序中dp[j]里计算的是组合数!

如果把两个for交换顺序,代码如下:

for (int j = 0; j <= amount; j++) { // 遍历背包容量
    for (int i = 0; i < coins.size(); i++) { // 遍历物品
        if (j - coins[i] >= 0) dp[j] += dp[j - coins[i]];
    }
}

背包容量的每一个值,都是经过 1 和 5 的计算,包含了{1, 5} 和 {5, 1}两种情况。

此时dp[j]里算出来的就是排列数!

可能这里很多同学还不是很理解,建议动手把这两种方案的dp数组数值变化打印出来,对比看一看!(实践出真知)

举例推导dp数组
输入: amount = 5, coins = [1, 2, 5] ,dp状态图如下:
leetcode动态规划(零钱兑换II、组合总和 Ⅳ),动态规划,leetcode,leetcode,动态规划,算法

最后红色框dp[amount]为最终结果。

以上分析完毕,C++代码如下:

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        vector<int> dp(amount + 1, 0);
        dp[0] = 1;
        for (int i = 0; i < coins.size(); i++) { // 遍历物品
            for (int j = coins[i]; j <= amount; j++) { // 遍历背包
                dp[j] += dp[j - coins[i]];
            }
        }
        return dp[amount];
    }
};

Python:

class Solution:
    def change(self, amount: int, coins: List[int]) -> int:
        dp = [0]*(amount + 1)
        dp[0] = 1
        # 遍历物品
        for i in range(len(coins)):
            # 遍历背包
            for j in range(coins[i], amount + 1):
                dp[j] += dp[j - coins[i]]
        return dp[amount]
  1. 组合总和 Ⅳ
    给定一个由正整数组成且不存在重复数字的数组,找出和为给定目标正整数的组合的个数。

示例:

nums = [1, 2, 3]
target = 4
所有可能的组合为: (1, 1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 3) (2, 1, 1) (2, 2) (3, 1)

请注意,顺序不同的序列被视作不同的组合。

因此输出为 7。

思路
对完全背包还不了解的同学,可以看这篇:动态规划:关于完全背包,你该了解这些!(opens new window)

本题题目描述说是求组合,但又说是可以元素相同顺序不同的组合算两个组合,其实就是求排列!

弄清什么是组合,什么是排列很重要。

组合不强调顺序,(1,5)和(5,1)是同一个组合。

排列强调顺序,(1,5)和(5,1)是两个不同的排列。

大家在公众号里学习回溯算法专题的时候,一定做过这两道题目回溯算法:39.组合总和 (opens new window)和回溯算法:40.组合总和II (opens new window)会感觉这两题和本题很像!

但其本质是本题求的是排列总和,而且仅仅是求排列总和的个数,并不是把所有的排列都列出来。

如果本题要把排列都列出来的话,只能使用回溯算法爆搜。

动规五部曲分析如下:

确定dp数组以及下标的含义
dp[i]: 凑成目标正整数为i的排列个数为dp[i]

确定递推公式
dp[i](考虑nums[j])可以由 dp[i - nums[j]](不考虑nums[j]) 推导出来。

因为只要得到nums[j],排列个数dp[i - nums[j]],就是dp[i]的一部分。

在动态规划:494.目标和 (opens new window)和 动态规划:518.零钱兑换II (opens new window)中我们已经讲过了,求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]];

本题也一样。

dp数组如何初始化
因为递推公式dp[i] += dp[i - nums[j]]的缘故,dp[0]要初始化为1,这样递归其他dp[i]的时候才会有数值基础。

至于dp[0] = 1 有没有意义呢?

其实没有意义,所以我也不去强行解释它的意义了,因为题目中也说了:给定目标值是正整数! 所以dp[0] = 1是没有意义的,仅仅是为了推导递推公式。

至于非0下标的dp[i]应该初始为多少呢?

初始化为0,这样才不会影响dp[i]累加所有的dp[i - nums[j]]。

确定遍历顺序
个数可以不限使用,说明这是一个完全背包。

得到的集合是排列,说明需要考虑元素之间的顺序。

本题要求的是排列,那么这个for循环嵌套的顺序可以有说法了。

在动态规划:518.零钱兑换II (opens new window)中就已经讲过了。

如果求组合数就是外层for循环遍历物品,内层for遍历背包。

如果求排列数就是外层for遍历背包,内层for循环遍历物品。

如果把遍历nums(物品)放在外循环,遍历target的作为内循环的话,举一个例子:计算dp[4]的时候,结果集只有 {1,3} 这样的集合,不会有{3,1}这样的集合,因为nums遍历放在外层,3只能出现在1后面!

所以本题遍历顺序最终遍历顺序:target(背包)放在外循环,将nums(物品)放在内循环,内循环从前到后遍历。

举例来推导dp数组
我们再来用示例中的例子推导一下:

leetcode动态规划(零钱兑换II、组合总和 Ⅳ),动态规划,leetcode,leetcode,动态规划,算法

如果代码运行处的结果不是想要的结果,就把dp[i]都打出来,看看和我们推导的一不一样。

以上分析完毕,C++代码如下:

class Solution {
public:
    int combinationSum4(vector<int>& nums, int target) {
        vector<int> dp(target + 1, 0);
        dp[0] = 1;
        for (int i = 0; i <= target; i++) { // 遍历背包
            for (int j = 0; j < nums.size(); j++) { // 遍历物品
                if (i - nums[j] >= 0 && dp[i] < INT_MAX - dp[i - nums[j]]) {
                    dp[i] += dp[i - nums[j]];
                }
            }
        }
        return dp[target];
    }
};

Python:

class Solution:
    def combinationSum4(self, nums: List[int], target: int) -> int:
        dp = [0] * (target + 1)
        dp[0] = 1
        for i in range(1, target + 1):  # 遍历背包
            for j in range(len(nums)):  # 遍历物品
                if i - nums[j] >= 0:
                    dp[i] += dp[i - nums[j]]
        return dp[target]

优化版文章来源地址https://www.toymoban.com/news/detail-790359.html

class Solution:
    def combinationSum4(self, nums: List[int], target: int) -> int:
        dp = [0] * (target + 1)  # 创建动态规划数组,用于存储组合总数
        dp[0] = 1  # 初始化背包容量为0时的组合总数为1

        for i in range(1, target + 1):  # 遍历背包容量
            for j in nums:  # 遍历物品列表
                if i >= j:  # 当背包容量大于等于当前物品重量时
                    dp[i] += dp[i - j]  # 更新组合总数

        return dp[-1]  # 返回背包容量为target时的组合总数

到了这里,关于leetcode动态规划(零钱兑换II、组合总和 Ⅳ)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 动态规划part06 518. 零钱兑换 II 377. 组合总和 Ⅳ

     518 零钱兑换|| 377. 组合总和 Ⅳ  

    2024年01月20日
    浏览(50)
  • Day 44 | 动态规划 完全背包、518. 零钱兑换 II 、 377. 组合总和 Ⅳ

    题目 文章讲解 视频讲解 完全背包和0-1背包的区别在于:物品是否可以重复使用 思路:对于完全背包问题,内层循环的遍历方式应该是从weight[i]开始一直遍历到V,而不是从V到weight[i]。这样可以确保每种物品可以被选择多次放入背包,从而求解完全背包问题。 对于完全背包问

    2024年02月20日
    浏览(44)
  • 代码随想录第44天|动态规划:完全背包理论基础 518.零钱兑换II 377. 组合总和 Ⅳ

    代码随想录 (programmercarl.com) 动态规划之完全背包,装满背包有多少种方法?组合与排列有讲究!| LeetCode:518.零钱兑换II_哔哩哔哩_bilibili 完全背包和01背包问题唯一不同的地方就是,每种物品有无限件 。 完全背包中的物品可以添加多次,所以要从小到大遍历: 518. 零钱兑换

    2024年04月25日
    浏览(44)
  • LeetCode518. 零钱兑换 II 以及 动态规划相关的排列组合问题

    一、题目 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带符号整数。 示例 1: 示

    2024年02月09日
    浏览(42)
  • 代碼隨想錄算法訓練營|第四十六天|完全背包、518. 零钱兑换 II、377. 组合总和 Ⅳ。刷题心得(c++)

    目录 动态规划 - 完全背包 和01背包的差別 定義 核心代碼 遍歷順序 總結 讀題 518. 零钱兑换 II 自己看到题目的第一想法 看完代码随想录之后的想法 377. 组合总和 Ⅳ 自己看到题目的第一想法 518. 零钱兑换 II - 實作 思路 Code 377. 组合总和 Ⅳ - 實作 思路 Code 總結 自己实现过

    2024年02月08日
    浏览(42)
  • 【LeetCode动态规划#08】完全背包问题实战与分析(零钱兑换II)

    力扣题目链接(opens new window) 给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。 示例 1: 输入: amount = 5, coins = [1, 2, 5] 输出: 4 解释: 有四种方式可以凑成总金额: 5=5 5=2+2+1 5=2+1+1+1 5=1+1+1+1+1 示例 2: 输入: amount = 3

    2023年04月19日
    浏览(47)
  • 算法学习——LeetCode力扣动态规划篇3(494. 目标和、474. 一和零、518. 零钱兑换 II)

    494. 目标和 - 力扣(LeetCode) 描述 给你一个非负整数数组 nums 和一个整数 target 。 向数组中的每个整数前添加 ‘+’ 或 ‘-’ ,然后串联起所有整数,可以构造一个 表达式 : 例如,nums = [2, 1] ,可以在 2 之前添加 ‘+’ ,在 1 之前添加 ‘-’ ,然后串联起来得到表达式 “

    2024年04月14日
    浏览(56)
  • 零钱兑换 II 力扣(动态规划) JAVA

    给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带符号整数。 示例 1: 输入:amou

    2024年02月15日
    浏览(38)
  • 零钱兑换 II(力扣)动态规划 JAVA

    给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带符号整数。 示例 1: 输入:amou

    2024年02月16日
    浏览(43)
  • 算法打卡day39|动态规划篇07| Leetcode 70. 爬楼梯(进阶版)、322. 零钱兑换、279.完全平方数

    Leetcode 70. 爬楼梯(进阶版) 题目: 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬至多m (1 = m n)个台阶。你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数。 输入描述:输入共一行,包含两个正整数,分别表示n, m 输出描述:输出一个整数,

    2024年04月14日
    浏览(65)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包