Matlab深度学习入门实例:从0搭建卷积神经网络CNN(附完整代码)

这篇具有很好参考价值的文章主要介绍了Matlab深度学习入门实例:从0搭建卷积神经网络CNN(附完整代码)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

网上已具有大量卷积神经网络的讲解,故本文不在对此赘述,这篇文章针对已了解CNN基础结构和原理者,以一个例子搭建一个简单的卷积神经网络,作为正式迈入深度学习的第一步。

我们以深度学习最经典的案例——手写数字的识别,和一种经典的CNN——LeNet进行本次学习。

Matlab的功能十分强大,其自带的深度学习工具箱可以使我们免于编写底层算法,迅速地搭建出一个卷积神经网络,同时,其自带手写数字图片以供学习,地址如下,笔者使用的是Matlab2022a。

matlab卷积神经网络,cnn,人工智能,神经网络,matlab,深度学习

我们将DigitDataset拷贝到当前编写代码的文件夹下,并删除其中包含两个Excel即可得到下列图片。

matlab卷积神经网络,cnn,人工智能,神经网络,matlab,深度学习

 第一步,加载手写数字样本图片,代码如下:

clear
clc

% 第一步:加载手写数字样本
imds = imageDatastore( ...
    'DigitDataset', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

'IncludeSubfolders',true:包含每个文件夹中的所有文件和子文件夹;

'LabelSource','foldernames':根据文件夹名称分配标签并储存在Labels属性中。

第二步,将样本划分为训练集和测试集,并统计分类数量,代码如下:

% 第二步:
% 将样本划分为训练集与测试集
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7);

% 统计训练集中分类标签的数量
numClasses = numel(categories(imdsTrain.Labels));

imdsTrain为训练样本数据,imdsValidation为验证样本数据,0.7为训练样本的比例。

第三步,构建LeNet并进行可视化分析,代码如下:文章来源地址https://www.toymoban.com/news/detail-790381.html

% 第三步:构建LeNET卷积网络并进行分析

到了这里,关于Matlab深度学习入门实例:从0搭建卷积神经网络CNN(附完整代码)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 项目实战解析:基于深度学习搭建卷积神经网络模型算法,实现图像识别分类

    随着人工智能的不断发展,深度学习这门技术也越来越重要,很多人都开启了学习机器学习,本文将通过项目开发实例,带领大家从零开始设计实现一款基于深度学习的图像识别算法。 学习本章内容, 你需要掌握以下基础知识: Python 基础语法 计算机视觉库(OpenCV) 深度学习

    2024年02月03日
    浏览(63)
  • 深度学习入门——深度卷积神经网络模型(Deep Convolution Neural Network,DCNN)概述

    机器学习是实现人工智能的方法和手段,其专门研究计算机如何模拟或实现人类的学习行为,以获取新的知识和技能,重新组织已有的知识结构使之不断改善自身性能的方法。计算机视觉技术作为人工智能的一个研究方向,其随着机器学习的发展而进步,尤其近10年来,以深

    2024年02月13日
    浏览(43)
  • 【AI】《动手学-深度学习-PyTorch版》笔记(十七):卷积神经网络入门

    我们在前面学习的多层感知机中,已经认识了全链接层,缺点很明显,在稍微大点的网络模型中,参数成指数级别增长。参数量很快就达到数十亿,这样的量级几乎无法计算。为此科学家们想出一个减少参数的方法:卷积。 从全链接层到卷积的推论,使用如下两个原则: 平

    2024年02月13日
    浏览(59)
  • 深度学习基础入门篇[8]::计算机视觉与卷积神经网络、卷积模型CNN综述、池化讲解、CNN参数计算

    计算机视觉作为一门让机器学会如何去“看”的学科,具体的说,就是让机器去识别摄像机拍摄的图片或视频中的物体,检测出物体所在的位置,并对目标物体进行跟踪,从而理解并描述出图片或视频里的场景和故事,以此来模拟人脑视觉系统。因此,计算机视觉也通常被叫

    2024年02月05日
    浏览(74)
  • 深度学习图像分类实战——pytorch搭建卷积神经网络(AlexNet, LeNet, ResNet50)进行场景图像分类(详细)

    目录 1  一、实验过程 1.1  实验目的 1.2  实验简介 1.3  数据集的介绍 1.4  一、LeNet5网络模型 1.5  二、AlexNet网络模型 1.6  三、ResNet50(残差网络)网络模型  二、实验代码 导入实验所需要的库  参数配置 数据预处理 重新DataSet 加载数据转为DataLoader函数 可视化一批训练

    2024年02月05日
    浏览(63)
  • PyToch 深度学习 || 3. 卷积神经网络 | 3.1 深度学习中的卷积操作

    加权求和是一种非常重要的运算,可以整合局部数字特征进而是提取局部信息的重要手段。这种加权求和的形式被称作卷积或者滤波,对于两个信号 f ( x

    2024年02月15日
    浏览(32)
  • 【深度学习】6-1 卷积神经网络 - 卷积层

    卷积神经网络(Convolutional Neural Network, CNN )。 CNN 被用于图像识别、语音识别等各种场合,在图像识别的比赛中,基于深度学习的方法几乎都以 CNN 为基础。 首先,来看一下 CNN 的网络结构,了解 CNN 的大致框架。CNN 和之前介绍的神经网络一样,可以像乐高积木一样通过组装层

    2024年02月10日
    浏览(46)
  • 深度学习|卷积神经网络

    卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习神经网络结构,主要用于 图像识别 、 计算机视觉 等领域。该结构在处理图像等高维数据时表现出色,因为它具有共享权重和局部感知的特点,一方面减少了权值的数量使得网络易于优化,另一方面降低了模型的复

    2024年02月11日
    浏览(40)
  • 深度学习,卷积神经网络

      CV领域发展 CV领域是计算机视觉(Computer Vision)领域的简称。 计算机视觉是指利用计算机模拟人类视觉系统的科学,让计算机具有类似于人类在观察外界的视觉、图像的能力,包括图像处理、图像分析、图像理解等。 计算机视觉领域发展有以下特点: 视觉系统的出现和不

    2024年02月15日
    浏览(51)
  • 机器学习&&深度学习——卷积神经网络(LeNet)

    👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习深度学习——池化层 📚订阅专栏:机器学习深度学习 希望文章对你们有所帮助 之前的内容中曾经将softmax回归模型和多层感知机应用于Fashion-MNIST数据集中的服装图片。为了能应用他们,我

    2024年02月14日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包