Multimodal Contrastive Training for Visual Representation Learning

这篇具有很好参考价值的文章主要介绍了Multimodal Contrastive Training for Visual Representation Learning。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Multimodal Contrastive Training for Visual Representation Learning,表征学习,人工智能,计算机视觉,算法,深度学习
parameterize the image encoder as f i q _{iq} iq
Multimodal Contrastive Training for Visual Representation Learning,表征学习,人工智能,计算机视觉,算法,深度学习
query feature q i i _{ii} ii,key feature k i i _{ii} ii
parameterize the textual encoder as f c q ( ⋅ ; Θ q , Φ c q ) f_{cq}(·; Θ_q, Φ_{cq}) fcq(⋅;Θq,Φcq),momentum textual encoder as f c k ( ⋅ ; Θ k , Φ i k ) f_{ck}(·; Θ_k, Φ_{ik}) fck(⋅;Θk,Φik). c j † c^†_j cj c j ⋆ c^\star_j cj是different augmented examples
Multimodal Contrastive Training for Visual Representation Learning,表征学习,人工智能,计算机视觉,算法,深度学习

吐槽

第一张图字母下标被黑色背景盖住了,且作者不公布代码,不该是CVPR的“水平”文章来源地址https://www.toymoban.com/news/detail-790709.html

到了这里,关于Multimodal Contrastive Training for Visual Representation Learning的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 论文阅读《Vision-Language Pre-Training with Triple Contrastive Learning》

    本文是2022年CVPR上的一篇 多模态 论文,利用对比学习和动量来进行图片与文本信息的上游预训练。 作者提出问题 简单的跨模态比对模型无法确保来自同一模态的相似输入保持相似。(模态内部语义信息损失) 全局互信息最大化的操作没有考虑局部信息和结构信息。 对于上

    2024年04月13日
    浏览(52)
  • 好文推荐 A transformer-based representation-learning model with unified processing of multimodal input

    论文地址:https://www.nature.com/articles/s41551-023-01045-x 代码地址:https://github.com/RL4M/IRENE 基于Transformer的表示学习模型,作为临床诊断辅助工具,以统一的方式处理多模态输入。将图像与文字转化为visual tokens和text tokens,通过一个双向的跨模态注意力机制块共同学习不同信息间的

    2024年02月07日
    浏览(43)
  • 论文阅读:Multimodal Graph Transformer for Multimodal Question Answering

    论文名 :Multimodal Graph Transformer for Multimodal Question Answering 论文链接 尽管 Transformer模型 在视觉和语言任务中取得了成功,但它们经常隐式地从大量数据中学习知识,而不能直接利用结构化的输入数据。另一方面, 结构化学习方法 ,如集成先验信息的图神经网络(gnn),几乎无法

    2024年02月04日
    浏览(43)
  • Eyes Wide Shut? Exploring the Visual Shortcomings of Multimodal LLMs

    大开眼界?探索多模态模型种视觉编码器的缺陷。 论文中指出,上面这些VQA问题,人类可以瞬间给出正确的答案,但是多模态给出的结果却是错误的。是哪个环节出了问题呢?视觉编码器的问题?大语言模型出现了幻觉?还是视觉特征与语言模型间的特征没有对齐? 作者将

    2024年01月24日
    浏览(44)
  • 论文笔记--GloVe: Global Vectors for Word Representation

    标题:GloVe: Global Vectors for Word Representation 作者:Jeffrey Pennington, Richard Socher, Christopher D. Manning 日期:2014 期刊:EMNLP   文章提出了一种新的单词表示的训练方法:Glove。该方法结合了基于统计方法和基于上下文窗口方法的优势,在多个下游任务上超越了当下SOTA方法的表现。

    2024年02月15日
    浏览(33)
  • 【论文阅读】Equivariant Contrastive Learning for Sequential Recommendation

    2023-RecSys https://github.com/Tokkiu/ECL 对比学习(CL)有利于对具有信息性自我监督信号的顺序推荐模型的训练。 现有的解决方案应用一般的顺序数据增强策略来生成正对,并鼓励它们的表示是不变的。 然而,由于用户行为序列的固有属性,一些增强策略,如项目替代,可能会导致

    2024年01月18日
    浏览(45)
  • 论文阅读:Rethinking Range View Representation for LiDAR Segmentation

    来源ICCV2023 LiDAR分割对于自动驾驶感知至关重要。最近的趋势有利于基于点或体素的方法,因为它们通常产生比传统的距离视图表示更好的性能。在这项工作中,我们揭示了建立强大的距离视图模型的几个关键因素。我们观察到, “多对一”的映射 , 语义不连贯性 , 形状变

    2024年02月02日
    浏览(52)
  • 【自监督论文阅读笔记】EVA: Exploring the Limits of Masked Visual Representation Learning at Scale

            本文推出了 EVA ,这是一个 以视觉为中心 的基础模型,旨在仅使用可公开访问的数据来 探索大规模 视觉表示的 局限性 。EVA 是一种经过预训练的普通 ViT,用于 重建 以可见图像块为条件的 屏蔽掉的 图像-文本对齐(image-text aligned)的视觉特征 。通过这个前置任

    2024年02月06日
    浏览(61)
  • 论文阅读:Heterogeneous Graph Contrastive Learning for Recommendation(WSDM ’23)

    论文链接 在推荐系统中,图神经网络在建模图结构数据上已经变成一个强有力的工具。但是现实生活的推荐语义通常涉及异质关系(像用户的社交关系,物品知识关系的依赖),这些都包含丰富的语义信息去提升表征能力的学习。同时,对比自监督学习在推荐系统中也取得了

    2024年02月08日
    浏览(50)
  • 论文笔记 - :DIGGING INTO OUTPUT REPRESENTATION FOR MONOCULAR 3D OBJECT DETECTION

    Title: 深入研究单目 3D 物体检测的 输出表示 单目 3D 对象检测旨在从单个图像中识别和定位 3D 空间中的对象。最近的研究取得了显着的进展,而所有这些研究都遵循基于 LiDAR 的 3D 检测中的典型输出表示。 然而,在本文中,我们认为现有的离散输出表示不适合单目 3D 检测。具

    2024年04月09日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包