Netlink 通信机制

这篇具有很好参考价值的文章主要介绍了Netlink 通信机制。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

一、Netlink 介绍

Netlink套接字是用以实现用户进程与内核进程通信的一种特殊的进程间通信(IPC) ,也是网络应用程序与内核通信的最常用的接口。

在Linux 内核中,使用netlink 进行应用与内核通信的应用有很多,如

  • 路由 daemon(NETLINK_ROUTE)
  • 用户态 socket 协议(NETLINK_USERSOCK)
  • 防火墙(NETLINK_FIREWALL)
  • netfilter 子系统(NETLINK_NETFILTER)
  • 内核事件向用户态通知(NETLINK_KOBJECT_UEVENT)
  • 通用netlink(NETLINK_GENERIC)

Netlink 是一种在内核与用户应用间进行双向数据传输的非常好的方式,用户态应用使用标准的 socket API 就可以使用 netlink 提供的强大功能,内核态需要使用专门的内核 API 来使用 netlink。

一般来说用户空间和内核空间的通信方式有三种:/proc、ioctl、Netlink。而前两种都是单向的,而Netlink可以实现双工通信。

Netlink 相对于系统调用,ioctl 以及 /proc文件系统而言,具有以下优点:

  • netlink使用简单,只需要在include/linux/netlink.h中增加一个新类型的 netlink 协议定义即可,(如 #define NETLINK_TEST 20 然后,内核和用户态应用就可以立即通过 socket API 使用该 netlink 协议类型进行数据交换)
  • netlink是一种异步通信机制,在内核与用户态应用之间传递的消息保存在socket缓存队列中,发送消息只是把消息保存在接收者的socket的接收队列,而不需要等待接收者收到消息
  • 使用 netlink 的内核部分可以采用模块的方式实现,使用 netlink 的应用部分和内核部分没有编译时依赖
  • netlink 支持多播,内核模块或应用可以把消息多播给一个netlink组,属于该neilink 组的任何内核模块或应用都能接收到该消息,内核事件向用户态的通知机制就使用了这一特性
  • 内核可以使用 netlink 首先发起会话

Netlink协议基于BSD socket和AF_NETLINK地址簇,使用32位的端口号寻址,每个Netlink协议通常与一个或一组内核服务/组件相关联,如NETLINK_ROUTE用于获取和设置路由与链路信息、NETLINK_KOBJECT_UEVENT用于内核向用户空间的udev进程发送通知等。

二、示例代码

  • netlink_test.c
#include <linux/init.h>
#include <linux/module.h>
#include <linux/types.h>
#include <net/sock.h>
#include <linux/netlink.h>

#define NETLINK_TEST     25
#define MSG_LEN            125
#define USER_PORT        100

MODULE_LICENSE("GPL");
MODULE_AUTHOR("zhangwj");
MODULE_DESCRIPTION("netlink example");

struct sock *nlsk = NULL;
extern struct net init_net;

/* 向用户空间发送消息的接口 */
int send_usrmsg(char *pbuf, uint16_t len)
{
    struct sk_buff *nl_skb;
    struct nlmsghdr *nlh;  // 消息头

    int ret;

    /* 创建sk_buff 空间 */
    nl_skb = nlmsg_new(len, GFP_ATOMIC);
    if(!nl_skb)
    {
        printk("netlink alloc failure\n");
        return -1;
    }

    /* 设置netlink消息头部 */
    nlh = nlmsg_put(nl_skb, 0, 0, NETLINK_TEST, len, 0);
    if(nlh == NULL)
    {
        printk("nlmsg_put failaure \n");
        nlmsg_free(nl_skb);
        return -1;
    }

    /* 拷贝数据发送 */
    memcpy(nlmsg_data(nlh), pbuf, len);
    ret = netlink_unicast(nlsk, nl_skb, USER_PORT, MSG_DONTWAIT); /* 发送单播消息 */

    return ret;
}

static void netlink_rcv_msg(struct sk_buff *skb)
{
    struct nlmsghdr *nlh = NULL;
    char *umsg = NULL;
    char *kmsg = "hello users!!!";

    if(skb->len >= nlmsg_total_size(0))
    {
        nlh = nlmsg_hdr(skb);
        umsg = NLMSG_DATA(nlh);/* 宏NLMSG_DATA(nlh)用于取得消息的数据部分的首地址,设置和读取消息数据部分时需要使用该宏 */
        if(umsg)
        {
            printk("kernel recv from user: %s\n", umsg);
            send_usrmsg(kmsg, strlen(kmsg));
        }
    }
}

struct netlink_kernel_cfg cfg = { 
        .input  = netlink_rcv_msg, /* set recv callback */
};  

int test_netlink_init(void)
{
    /* create netlink socket */
    nlsk = (struct sock *)netlink_kernel_create(&init_net, NETLINK_TEST, &cfg);
    if(nlsk == NULL)
    {   
        printk("netlink_kernel_create error !\n");
        return -1; 
    }   
    printk("test_netlink_init\n");
    
    return 0;
}

void test_netlink_exit(void)
{
    if (nlsk){
        netlink_kernel_release(nlsk); /* release ..*/
        nlsk = NULL;
    }   
    printk("test_netlink_exit!\n");
}

module_init(test_netlink_init);
module_exit(test_netlink_exit);
  • Makefile
#
#Desgin of Netlink
#

MODULE_NAME :=netlink_test
obj-m :=$(MODULE_NAME).o

KERNELDIR ?= /lib/modules/$(shell uname -r)/build
PWD := $(shell pwd)

all:
	$(MAKE) -C $(KERNELDIR) M=$(PWD)

clean:
	$(MAKE) -C $(KERNELDIR) M=$(PWD) clean
  • sender.c
#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <string.h>
#include <linux/netlink.h>
#include <stdint.h>
#include <unistd.h>
#include <errno.h>

#define NETLINK_TEST    25
#define MSG_LEN            125
#define MAX_PLOAD        125

typedef struct _user_msg_info
{
    struct nlmsghdr hdr;
    char  msg[MSG_LEN];
} user_msg_info;

int main(int argc, char **argv)
{
    int skfd;
    int ret;
    user_msg_info u_info;
    socklen_t len;
    struct nlmsghdr *nlh = NULL;
    struct sockaddr_nl saddr, daddr;
    char *umsg = "hello netlink!!";

    /* 创建NETLINK socket */
    skfd = socket(AF_NETLINK, SOCK_RAW, NETLINK_TEST);
    if(skfd == -1)
    {
        perror("create socket error\n");
        return -1;
    }

    memset(&saddr, 0, sizeof(saddr));
    saddr.nl_family = AF_NETLINK; //AF_NETLINK
    saddr.nl_pid = 100;  //端口号(port ID) 
    saddr.nl_groups = 0;
    
    /* 将套接字和Netlink地址结构体进行绑定 */
    if(bind(skfd, (struct sockaddr *)&saddr, sizeof(saddr)) != 0)
    {
        perror("bind() error\n");
        close(skfd);
        return -1;
    }

    memset(&daddr, 0, sizeof(daddr));
    daddr.nl_family = AF_NETLINK;
    daddr.nl_pid = 0; // to kernel 
    daddr.nl_groups = 0;

    /* 填充Netlink消息头部 */
    nlh = (struct nlmsghdr *)malloc(NLMSG_SPACE(MAX_PLOAD));
    memset(nlh, 0, sizeof(struct nlmsghdr));
    nlh->nlmsg_len = NLMSG_SPACE(MAX_PLOAD);
    nlh->nlmsg_flags = 0;
    nlh->nlmsg_type = 0;
    nlh->nlmsg_seq = 0;
    nlh->nlmsg_pid = saddr.nl_pid; //self port

    /* 设置Netlink的消息内容 */
    memcpy(NLMSG_DATA(nlh), umsg, strlen(umsg));
    /* 发送单播消息 */
    ret = sendto(skfd, nlh, nlh->nlmsg_len, 0, (struct sockaddr *)&daddr, sizeof(struct sockaddr_nl));
    if(!ret)
    {
        perror("sendto error\n");
        close(skfd);
        exit(-1);
    }
    printf("send kernel:%s\n", umsg);

    /*这个是模板,暂时不用纠结为什么要这样用。有时间详细讲解socket时再说*/
    memset(&u_info, 0, sizeof(u_info));
    len = sizeof(struct sockaddr_nl);
    /* 接收消息 */
    ret = recvfrom(skfd, &u_info, sizeof(user_msg_info), 0, (struct sockaddr *)&daddr, &len);
    if(!ret)
    {
        perror("recv form kernel error\n");
        close(skfd);
        exit(-1);
    }

    printf("from kernel:%s\n", u_info.msg);
    close(skfd);

    free((void *)nlh);
    return 0;
}

运行结果:文章来源地址https://www.toymoban.com/news/detail-791069.html

root@xxx# gcc sender.c -o sender && ./sender 
send kernel:hello netlink!!
from kernel:hello users!!!
[20840.743223] kernel recv from user: hello netlink!!

参考资料

  1. linux下netlink的使用简介
  2. 用户空间和内核空间通讯之【Netlink 上】
  3. 用户空间和内核空间通讯之【Netlink 中】
  4. 用户空间和内核空间通讯之【Netlink 下】
  5. linux netlink遇到的问题

到了这里,关于Netlink 通信机制的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Spring Boot与Feign:微服务架构下的优雅通信

    本文将详细介绍在Spring Boot框架中如何使用Feign进行微服务之间的优雅通信。我们将从Feign的基本原理讲起,然后逐步展开使用Feign的完整流程和步骤,包括代码示例和详细注释。通过本文,读者将能够轻松掌握Feign在Spring Boot微服务架构中的应用。 Feign是一个声明式的Web Servi

    2024年02月21日
    浏览(38)
  • Java微服务架构之Spring Boot —上篇

    SpringBoot提供了一种快速使用Spring的方式,基于约定优于配置的思想,可以让开发人员不必在配置与逻辑业务之间进行思维的切换,全身心的投入到逻辑业务的代码编写中,从而大大提高了开发的效率,一定程度上缩短了项目周期。2014年4月,Spring Boot1.0.0发布。Spring的顶级项目

    2024年04月28日
    浏览(28)
  • Java版分布式微服务云开发架构 Spring Cloud+Spring Boot+Mybatis 电子招标采购系统功能清单

       一、立项管理 1、招标立项申请 功能点:招标类项目立项申请入口,用户可以保存为草稿,提交。 2、非招标立项申请 功能点:非招标立项申请入口、用户可以保存为草稿、提交。 3、采购立项列表 功能点:对草稿进行编辑,驳回的立项编辑,在途流程查看。 二、项目管

    2024年02月17日
    浏览(36)
  • 深入理解Linux 内核追踪机制

    Linux 存在众多 tracing tools,比如 ftrace、perf,他们可用于内核的调试、提高内核的可观测性。众多的工具也意味着繁杂的概念,诸如 tracepoint、trace events、kprobe、eBPF 等,甚至让人搞不清楚他们到底是干什么的。本文尝试理清这些概念。   Probe Handler 如果我们想要追踪内核的一

    2024年02月15日
    浏览(39)
  • 【Linux内核】内存管理——内存回收机制

    转载请注明: https://www.cnblogs.com/Ethan-Code/p/16626560.html 前文提到malloc的内存分配方式,malloc申请的是虚拟内存,只有在程序去访问时,才会触发缺页异常进入内核态,在缺页中断函数中建立物理内存映射。 如果物理内存充足,则直接建立页框与页的映射。当物理内存不足时,内

    2023年04月09日
    浏览(38)
  • 【Linux 内核源码分析】RCU机制

    Linux内核的RCU(Read-Copy-Update)机制是一种用于实现高效读取和并发更新数据结构的同步机制。它在保证读操作不被阻塞的同时,也能够保证数据的一致性。 RCU的核心思想是通过延迟资源释放来实现无锁读取,并且避免了传统锁带来的争用和开销。具体而言,RCU维护了一个“回

    2024年01月15日
    浏览(65)
  • 【Linux内核解析-linux-5.14.10-内核源码注释】关于Linux同步机制知识点整理

    在Linux系统中,同步机制是操作系统中非常重要的一部分,以下是一些基本要点: 什么是同步机制?同步机制是一种操作系统提供的机制,用于协调多个进程或线程之间的访问共享资源,防止出现竞态条件和死锁等问题。 Linux中常用的同步机制有哪些?Linux中常用的同步机制

    2024年02月04日
    浏览(37)
  • 【Spring Boot】Spring Boot自动加载机制:简化应用程序的启动

    在微服务盛行的今天,快速搭建和启动应用程序变得至关重要。Spring Boot作为Java生态系统中主流的框架,其自动加载机制使得开发者能够快速构建和启动应用程序。本文将详细介绍Spring Boot的自动加载机制,并通过代码示例加以说明。 首先,我们要了解Spring Boot自动加载机制

    2024年02月11日
    浏览(28)
  • Spring Boot 事务和事务传播机制

    事务定义 将一组操作封装成一个执行单元 (封装到一起),这一组的执行具备原子性, 那么就要么全部成功,要么全部失败. 为什么要用事务? 比如转账分为两个操作: 第一步操作:A 账户-100 元。 第二步操作:B账户 +100 元。 如果没有事务,第一步执行成功了,第二步执行失败了,

    2024年02月11日
    浏览(29)
  • Linux内核源码分析 1:Linux内核体系架构和学习路线

    好久没有动笔写文章了,这段时间经历了蛮多事情的。这段时间自己写了一两个基于不同指令集的 Linux 内核, x86 和 RISC-V 。期间也去做了一些嵌入式相关的工作,研究了一下 ARM 指令集架构。 虽然今年九月份我就要申请了,具体申请 AI 方向还是机器人、嵌入式、操作系统、

    2024年02月07日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包