【Python实战】Python采集二手车数据——超详细讲解

这篇具有很好参考价值的文章主要介绍了【Python实战】Python采集二手车数据——超详细讲解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

基于python的二手车数据爬取和分析报告,python项目实战,python,开发语言,人工智能

今天,我们将采集某二手车数据,通过这个案例,加深我们对xpath的理解。通过爬取数据后数据分析能够直观的看到二手车市场中某一品牌的相对数据,能够了解到现在的二手车市场情况,通过分析数据看到二手车的走势,车商就可以利用这些数据进行定价,让想买二手车却不了解市场的人了解到大概的价格走势,到了店里不会被骗。

环境使用

  • python 3.9
  • pycharm

模块使用

  • requests

模块介绍

  • requests

        requests是一个很实用的Python HTTP客户端库,爬虫和测试服务器响应数据时经常会用到,requests是Python语言的第三方的库,专门用于发送HTTP请求,使用起来比urllib简洁很多。

  • parsel

        parsel是一个python的第三方库,相当于css选择器+xpath+re。

parsel由scrapy团队开发,是将scrapy中的parsel独立抽取出来的,可以轻松解析html,xml内容,获取需要的数据。

相比于BeautifulSoup,xpath,parsel效率更高,使用更简单。

  • re

        re模块是python独有的匹配字符串的模块,该模块中提供的很多功能是基于正则表达式实现的,而正则表达式是对字符串进行模糊匹配,提取自己需要的字符串部分,他对所有的语言都通用。

  • os

        os 就是 “operating system” 的缩写,顾名思义,os模块提供的就是各种 Python 程序与操作系统进行交互的接口。通过使用 os 模块,一方面可以方便地与操作系统进行交互,另一方面也可以极大增强代码的可移植性。

  • csv

        它是一种文件格式,一般也被叫做逗号分隔值文件,可以使用 Excel 软件或者文本文档打开 。其中数据字段用半角逗号间隔(也可以使用其它字符),使用 Excel 打开时,逗号会被转换为分隔符。csv 文件是以纯文本形式存储了表格数据,并且在兼容各个操作系统。

模块安装问题:

  • 如果安装python第三方模块:

win + R 输入 cmd 点击确定, 输入安装命令 pip install 模块名 (pip install requests) 回车

在pycharm中点击Terminal(终端) 输入安装命令

  • 安装失败原因:
  • 失败一: pip 不是内部命令

                解决方法: 设置环境变量

  • 失败二: 出现大量报红 (read time out)

                解决方法: 因为是网络链接超时, 需要切换镜像源

   

    清华:https://pypi.tuna.tsinghua.edu.cn/simple
    阿里云:https://mirrors.aliyun.com/pypi/simple/
    中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/
    华中理工大学:https://pypi.hustunique.com/
    山东理工大学:https://pypi.sdutlinux.org/
    豆瓣:https://pypi.douban.com/simple/
    例如:pip3 install -i https://pypi.doubanio.com/simple/ 模块名
  • 失败三: cmd里面显示已经安装过了, 或者安装成功了, 但是在pycharm里面还是无法导入

                解决方法: 可能安装了多个python版本 (anaconda 或者 python 安装一个即可) 卸载一个就好,或者你pycharm里面python解释器没有设置好。

数据采集

发送请求

首先,我们要进行数据来源分析,知道我们的需求是什么?

明确需求:

  • 明确采集网站是什么?
  • 明确采集数据是什么?

        车辆基本信息

然后,我们分析车辆基本信息数据, 具体是请求那个网址可以得到我们想要的数据。

通过开发者工具, 进行抓包分析:

打开开发者工具: F12 / 鼠标右键点击检查选择network

刷新网页: 让本网页数据内容重新加载一遍 <方便分析数据出处>

搜索数据来源: 复制你想要的内容, 进行搜索即可

    import requests
    url = 'https://www.che168.com/china/a0_0msdgscncgpi1ltocsp1exx0/'
    header = {
        'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36'}

    res = requests.get(url,headers=headers)

我们和之前一样,获取数据,我们会发现,车辆的基本信息就在网页源代码中,我们今天就用xpath的方法来解析数据。
 

解析数据

接下来,我们用xpath解析数据。

基于python的二手车数据爬取和分析报告,python项目实战,python,开发语言,人工智能

 我们通过网页源代码,我们可以获取到每一个网页的url。

    selector=parsel.Selector(res.text)

    detail_url_list = selector.xpath('//ul[@class="viewlist_ul"]/li/a[@class="carinfo"]/@href').getall()

我们可以看到,得到下面数据。

基于python的二手车数据爬取和分析报告,python项目实战,python,开发语言,人工智能

我们会发现,我们得到了两种网页,所以,在这里我们拼接网页就需要注意,这里,我不多说,直接看我是怎么写的。

        if detail_url.split('/') == '':
            detail_url = 'https:'+detail_url
        else:
            detail_url = 'https://www.che168.com'+detail_url

这样,我们就得到了每一个车辆信息的数据网页,看看运行之后的效果吧。

基于python的二手车数据爬取和分析报告,python项目实战,python,开发语言,人工智能

接下来,我们就依次访问某个链接,获取我们想要的数据。

    responses = requests.get(detail_url,headers=headers)
    detail_selector = parsel.Selector(responses.text)

基于python的二手车数据爬取和分析报告,python项目实战,python,开发语言,人工智能

 我用不同颜色标注的,就是我们这次想要获取的数据,我们这里以车辆名称为例,讲解下path如何写。

title = detail_selector.xpath('string(//h3[@class="car-brand-name"])').get("").strip()

我们看看网页源代码是如何得到的xpath。

基于python的二手车数据爬取和分析报告,python项目实战,python,开发语言,人工智能

 可能有人就要问了,这个

("").strip()

是什么意思?这个就是去除空格的,只是为了后期数据的美观。

后面的我就不一一展示了,我直接放代码了,不懂的在评论区交流。

tableShowMileage = detail_selector.xpath('//ul[@class="brand-unit-item fn-clear"]/li[1]/h4/text()').get("").strip()
theRegistrationTime = detail_selector.xpath('//ul[@class="brand-unit-item fn-clear"]/li[2]/h4/text()').get("").strip()
blockADisplacement = detail_selector.xpath('//ul[@class="brand-unit-item fn-clear"]/li[3]/h4/text()').get("").strip()
addr = detail_selector.xpath('//ul[@class="brand-unit-item fn-clear"]/li[4]/h4/text()').get("").strip()
guobiao = detail_selector.xpath('//ul[@class="brand-unit-item fn-clear"]/li[5]/h4/text()').get("").strip()
price = detail_selector.xpath('string(//span[@id="overlayPrice"])').get()

我们打印这些数据,看看效果吧。

基于python的二手车数据爬取和分析报告,python项目实战,python,开发语言,人工智能

可能大家注意到了,有返回空值的,这个可能就是被反爬,大家感兴趣可以用代理IP试试。 

保存数据

和我们上一篇一样,我们先写入字典,然后在写入csv文件里面。

        dit ={
            '车辆':title,
            '表显里程':tableShowMileage,
            '上牌时间':theRegistrationTime,
            '挡位/排量':blockADisplacement,
            '车辆所在地':addr,
            '查看限迁地':guobiao,
            '价格':price,
        }
        
        csv_writer.writerow(dit)

大家感兴趣还可以获取车辆信息更详细的数据,其实原理都是一样的。

总结

通过本文的学习,我们学习了数据采集。我们在采集数据的时候,遇到各种问题,自己在尝试解决问题,也是在一种学习,本次实战,我们明白如何使用xpath解析数据。今天就到这里,有什么问题,可以在评论区留言。

基于python的二手车数据爬取和分析报告,python项目实战,python,开发语言,人工智能文章来源地址https://www.toymoban.com/news/detail-791366.html

到了这里,关于【Python实战】Python采集二手车数据——超详细讲解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于Python+Flask+Echart实现二手车数据分析展示

    作者主页:编程指南针 作者简介:Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、腾讯课堂常驻讲师 主要内容:Java项目、Python项目、前端项目、人工智能与大数据、简历模板、学习资料、面试题库

    2024年02月09日
    浏览(36)
  • 微信小程序之二手车交易商城平台的设计与实现 后台php+mysql(附论文 源码 讲解)

    摘 要 在移动互联网的迅速发展推进下,微信成了人们生活中不可缺少的一款信息交流和沟通平台。而微信小程序的推出,便得现在人们在日常生活中更多的是通过手机微信平台进行安装各种各样的APP小程序来满足个人所需。二手车微信小程序是基于满足当前人们对二手车买

    2024年02月06日
    浏览(54)
  • 【毕业设计】微信小程序之二手车交易商城平台的设计与实现 后台php+mysql(附论文 源码 讲解)

    摘 要 在移动互联网的迅速发展推进下,微信成了人们生活中不可缺少的一款信息交流和沟通平台。而微信小程序的推出,便得现在人们在日常生活中更多的是通过手机微信平台进行安装各种各样的APP小程序来满足个人所需。二手车微信小程序是基于满足当前人们对二手车买

    2024年02月07日
    浏览(59)
  • Python二手车价格预测(二)—— 模型训练及可视化

    一、Python数据分析-二手车数据获取用于机器学习二手车价格预测 二、Python二手车价格预测(一)—— 数据处理         前面分享了二手车数据获取的内容,又对获取的原始数据进行了数据处理,相关博文可以访问上面链接。许多朋友私信我问会不会出模型,今天模型basel

    2024年02月05日
    浏览(52)
  • python笔记16_实例练习_二手车折旧分析p1

    python数据分析练习,具体数据不放出。 分析实践很简单。目的不是做完,而是讲清楚每一步的目的和连带的知识点(所以才叫学习笔记) 原始数据格式:csv文件 原始数据结构: 数据格式 字段名 int(无用信息) 无 String che300_brand_name float new_price String maker_type float lowest_pric

    2024年02月07日
    浏览(91)
  • python笔记17_实例演练_二手车折旧分析p2

    …… 书接上文 探查车龄为5年的车辆,折旧价值与车辆等级的关系。 这里用到了 DataFrame 的 groupby 函数 ,这个函数对于数据处理的重要程度无需赘言。 groupby 必须配合聚合函数 同时使用,否则只能得到一个 DataFrameGroupBy 类型的玩意儿。 这里是可以只传 groupby 参数,不写聚合

    2024年02月07日
    浏览(42)
  • 零基础入门数据挖掘——二手车交易价格预测:baseline

    比赛要求参赛选手根据给定的数据集,建立模型,二手汽车的交易价格。 赛题以预测二手车的交易价格为任务,数据集报名后可见并可下载,该数据来自某交易平台的二手车交易记录,总数据量超过40w,包含31列变量信息,其中15列为匿名变量。为了保证比赛的公平性,将会

    2024年02月03日
    浏览(58)
  • 大数据分析案例-基于XGBoost算法构建二手车价格评估模型

    🤵‍♂️ 个人主页:@艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+ 喜欢大数据分析项目的小伙伴,希望可以多多支持该系列的其他文章 大数据分析案例合集

    2023年04月09日
    浏览(44)
  • 【机器学习入门与实践】数据挖掘-二手车价格交易预测(含EDA探索、特征工程、特征优化、模型融合等)

    【机器学习入门与实践】数据挖掘-二手车价格交易预测(含EDA探索、特征工程、特征优化、模型融合等) note:项目链接以及码源见文末 了解赛题 赛题概况 数据概况 预测指标 分析赛题 数据读取pandas 分类指标评价计算示例 回归指标评价计算示例 EDA探索 载入各种数据科学以

    2023年04月13日
    浏览(240)
  • 天池长期赛:二手车价格预测(422方案分享)

    前言 一、赛题介绍及评测标准 二、数据探索(EDA) 1.读取数据、缺失值可视化 2.特征描述性统计 3.测试集与验证集数据分布 4.特征相关性 三、数据清洗 四、特征工程 1.构建时间特征 2.匿名特征交叉 3.平均数编码 五、建模调参 六、模型融合 总结 赛题属于回归类型,相比于

    2024年02月01日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包