Unity 基于法线和深度实现完美描边,可独立控制物体描边

这篇具有很好参考价值的文章主要介绍了Unity 基于法线和深度实现完美描边,可独立控制物体描边。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

unity 边缘检测描边,Shader,unity,shader

前言

最近项目需要快速出一版卡通渲染风格进行吸量测试。但是原来的模型非常不适合使用back face 的描边方案(很难看),不得已寻求其他的描边方案,于是有了现在这篇基于法线和深度的后处理描边。

优点:

  • 描边宽度一致。
  • 重叠部分也能有描边。
  • 不会出现断裂
    缺点:
  • 后处理时有一定消耗(全屏采样8次)

本文是基于buildin 渲染管线,非URP。(老项目,没办法)
本文会使用自定义post-processing,目的是可以和其他的post-processing效果结合,方便使用

不熟悉post-processing 的同学可以看下面这个文章:
PostProcessing的使用

自定义PostProcess

using System;
using UnityEngine;
using UnityEngine.Rendering.PostProcessing;

[Serializable]
[PostProcess(typeof(PostProcessOutlineRenderer), PostProcessEvent.BeforeStack, "Post Process Outline")]
public sealed class PostProcessOutline : PostProcessEffectSettings
{
    //声明变量
    public IntParameter scale = new IntParameter { value = 1 };
    public FloatParameter  depthThreshold = new FloatParameter  { value = 1 };
    [Range(0, 1)]
    public FloatParameter normalThreshold = new FloatParameter { value = 0.4f };
    [Range(0, 1)]
    public FloatParameter depthNormalThreshold = new FloatParameter { value = 0.5f };
    public FloatParameter depthNormalThresholdScale = new FloatParameter { value = 7 };
    public ColorParameter color = new ColorParameter { value = Color.white };
}

public sealed class PostProcessOutlineRenderer : PostProcessEffectRenderer<PostProcessOutline>
{
    public override void Render(PostProcessRenderContext context)
    {
    //将面板变量对Outline shader赋值
        var sheet = context.propertySheets.Get(Shader.Find("Hidden/Outline Post Process"));
        sheet.properties.SetFloat("_Scale", settings.scale);
        sheet.properties.SetFloat("_DepthThreshold", settings.depthThreshold);
        sheet.properties.SetFloat("_NormalThreshold", settings.normalThreshold);
        Matrix4x4 clipToView = GL.GetGPUProjectionMatrix(context.camera.projectionMatrix, true).inverse;
        sheet.properties.SetMatrix("_ClipToView", clipToView);
        sheet.properties.SetFloat("_DepthNormalThreshold", settings.depthNormalThreshold);
        sheet.properties.SetFloat("_DepthNormalThresholdScale", settings.depthNormalThresholdScale);
        sheet.properties.SetColor("_Color", settings.color);
        context.command.BlitFullscreenTriangle(context.source, context.destination, sheet, 0);
    }
}

添加这个脚本后,我们就可以在PostProcess面板上进行输入参数控制
unity 边缘检测描边,Shader,unity,shader
使用properties.SetXXX 将数据传入后处理Shader中

sheet.properties.SetFloat("_Scale", settings.scale);

后面Shader所使用的外部数据基本都由这里输入。
完整的Shader代码会放在最后。

OutlineShader关键代码说明

1 使用深度绘制描边

1.1 获得斜四方形UV坐标:

float halfScaleFloor = floor(_Scale * 0.5);
float halfScaleCeil = ceil(_Scale * 0.5);

float2 bottomLeftUV = i.texcoord - float2(_MainTex_TexelSize.x, _MainTex_TexelSize.y) * halfScaleFloor;
float2 topRightUV = i.texcoord + float2(_MainTex_TexelSize.x, _MainTex_TexelSize.y) * halfScaleCeil;  
float2 bottomRightUV = i.texcoord + float2(_MainTex_TexelSize.x * halfScaleCeil, -_MainTex_TexelSize.y * halfScaleFloor);
float2 topLeftUV = i.texcoord + float2(-_MainTex_TexelSize.x * halfScaleFloor, _MainTex_TexelSize.y * halfScaleCeil);

i.texcoord 是屏幕UV
_Scale 是我们用来调整描边粗细的参数。通过floor 和ceil, 使得halfScaleFloor 和 halfScaleCeil 在调整_Scale时,以整数改变。通过这种方式,我们就可以让边缘检测像素以原UV位置向4个斜方向每次增加1像素。(因为深度和法线图是用point filtering采样的,不存在插值,所以我们使用整数增加)
unity 边缘检测描边,Shader,unity,shader
unity 边缘检测描边,Shader,unity,shader

1.2 采样四方向深度

float depth0 = SAMPLE_DEPTH_TEXTURE(_CameraDepthTexture, sampler_CameraDepthTexture, bottomLeftUV).r;
float depth1 = SAMPLE_DEPTH_TEXTURE(_CameraDepthTexture, sampler_CameraDepthTexture, topRightUV).r;
float depth2 = SAMPLE_DEPTH_TEXTURE(_CameraDepthTexture, sampler_CameraDepthTexture, bottomRightUV).r;
float depth3 = SAMPLE_DEPTH_TEXTURE(_CameraDepthTexture, sampler_CameraDepthTexture, topLeftUV).r;

如果我们查看depth0的结果,可以看到下图
unity 边缘检测描边,Shader,unity,shader
离摄像机越近,颜色越亮,越远则越暗。
这时我们就可以用两两深度图相减,这样两图深度相近的地方颜色值就非常小。深度差别大的地方则相反。

float depthFiniteDifference0 = depth1 - depth0;
float depthFiniteDifference1 = depth3 - depth2;

return abs(depthFiniteDifference0) * 100;//为了方便查看结果扩大100倍

得到下图:
unity 边缘检测描边,Shader,unity,shader
现在将两张深度图的平方相加再开方(The Roberts Cross 边缘检测方法)

float edgeDepth = sqrt(pow(depthFiniteDifference0, 2) + pow(depthFiniteDifference1, 2)) * 100;
return edgeDepth;

获得下图:
unity 边缘检测描边,Shader,unity,shader
这个时候,一些外围边缘已经清晰可见。但是我们还是能在物体表面看到一些灰色区域。所以我们需要把较低的深度值过滤掉。
使用阈值_DepthThreshold

edgeDepth = edgeDepth > _DepthThreshold ? 1 : 0;
return edgeDepth;	

在_DepthThreshold 值设定为0.2时,得到下图
unity 边缘检测描边,Shader,unity,shader
这样,我们就解决了灰色区域。但是我们也注意到前方有一个Cube的顶部全部填充的白色,后方的两个Cube重叠区域没有描边,梯子和前方方块有些边缘没有绘制。

我们先解决后方Cube的问题。
因为深度值是非线性的,越到后面深度相差就越小。那么我们就要根据深度值改变阈值大小。

float depthThreshold = _DepthThreshold * depth0;
edgeDepth = edgeDepth > depthThreshold ? 1 : 0;

再将_DepthThreshold 改到1.5 我们可以看到
unity 边缘检测描边,Shader,unity,shader
这样,后面重叠的Cube也能看到边缘了。
接下来我们要解决一些边缘缺失的问题。

2 使用法线绘制描边

为了获得所有物体法线数据,我们需要一个摄像机,来绘制法线图。然后将法线图保存到一个Shader全局变量中:_CameraNormalsTexture

为主摄像机添加脚本:

using UnityEngine;

public class RenderReplacementShaderToTexture : MonoBehaviour
{
    [SerializeField]
    Shader replacementShader;

    [SerializeField]
    RenderTextureFormat renderTextureFormat = RenderTextureFormat.ARGB32;

    [SerializeField]
    FilterMode filterMode = FilterMode.Point;

    [SerializeField]
    int renderTextureDepth = 24;

    [SerializeField]
    CameraClearFlags cameraClearFlags = CameraClearFlags.Color;

    [SerializeField]
    Color background = Color.black;

    [SerializeField]
    string targetTexture = "_RenderTexture";

    private RenderTexture renderTexture;
    private new Camera camera;

    private void Start()
    {
        foreach (Transform t in transform)
        {
            DestroyImmediate(t.gameObject);
        }

        Camera thisCamera = GetComponent<Camera>();

        // Create a render texture matching the main camera's current dimensions.
        renderTexture = new RenderTexture(thisCamera.pixelWidth, thisCamera.pixelHeight, renderTextureDepth, renderTextureFormat);
        renderTexture.filterMode = filterMode;
        // Surface the render texture as a global variable, available to all shaders.
        Shader.SetGlobalTexture(targetTexture, renderTexture);

        // Setup a copy of the camera to render the scene using the normals shader.
        GameObject copy = new GameObject("Camera" + targetTexture);
        camera = copy.AddComponent<Camera>();
        camera.CopyFrom(thisCamera);
        camera.transform.SetParent(transform);
        camera.targetTexture = renderTexture;
        camera.SetReplacementShader(replacementShader, "RenderType");
        camera.depth = thisCamera.depth - 1;
        camera.clearFlags = cameraClearFlags;
        camera.backgroundColor = background;
    }
}

通过SetReplacementShader,将场景中物体替换为绘制法线的Shader。得到法线图。
绘制法线Shader:

Shader "Hidden/Normals Texture"
{
    Properties
    {
    }
    SubShader
    {
        Tags 
		{ 
			"RenderType" = "Opaque" 
		}

        Pass
        {
            CGPROGRAM
            #pragma vertex vert
            #pragma fragment frag

            #include "UnityCG.cginc"

            struct appdata
            {
                float4 vertex : POSITION;
				float3 normal : NORMAL;
            };

            struct v2f
            {
                float4 vertex : SV_POSITION;
				float3 viewNormal : NORMAL;
            };

            sampler2D _MainTex;
            float4 _MainTex_ST;

            v2f vert (appdata v)
            {
                v2f o;
                o.vertex = UnityObjectToClipPos(v.vertex);
                o.viewNormal = COMPUTE_VIEW_NORMAL;
				//o.viewNormal = mul((float3x3)UNITY_MATRIX_M, v.normal);
                return o;
            }

            float4 frag (v2f i) : SV_Target
            {
                return float4(normalize(i.viewNormal) * 0.5 + 0.5, 0);
            }
            ENDCG
        }
    }
}

点击Play按钮,我们能在生成的法线摄像机中看到下图:
unity 边缘检测描边,Shader,unity,shader
这时,我们就可以在Outline Shader中使用法线数据了。
同样,我们进行斜四方向采样。

float3 normal0 = SAMPLE_TEXTURE2D(_CameraNormalsTexture, sampler_CameraNormalsTexture, bottomLeftUV).rgb;
float3 normal1 = SAMPLE_TEXTURE2D(_CameraNormalsTexture, sampler_CameraNormalsTexture, topRightUV).rgb;
float3 normal2 = SAMPLE_TEXTURE2D(_CameraNormalsTexture, sampler_CameraNormalsTexture, bottomRightUV).rgb;
float3 normal3 = SAMPLE_TEXTURE2D(_CameraNormalsTexture, sampler_CameraNormalsTexture, topLeftUV).rgb;

然后继续使用The Roberts Cross 方法计算边缘:

float3 normalFiniteDifference0 = normal1 - normal0;
float3 normalFiniteDifference1 = normal3 - normal2;

float edgeNormal = sqrt(dot(normalFiniteDifference0, normalFiniteDifference0) + dot(normalFiniteDifference1, normalFiniteDifference1));
edgeNormal = edgeNormal > _NormalThreshold ? 1 : 0;

return edgeNormal;

由于 normalFiniteDifference0 是个float3 向量,所以使用点乘Dot来代替平方。得到下图:
unity 边缘检测描边,Shader,unity,shader
可以看到,通过法线比较获得的边缘,不会有一块白的区域。
并且我们得到了一些深度检测没有获得的边缘。
现将两个结果合并:

float edge = max(edgeDepth, edgeNormal);
return edge;

得到下图:
unity 边缘检测描边,Shader,unity,shader

3 解决倾斜表面白块问题

因为深度检测的原因,倾斜表面像素间会有很大的深度差。所以容易产生白块。为了解决这个问题,我们还需要知道摄像机到表面的方向(view direction 视方向)

3.1 计算视方向

由于我们采样的法线图是在视空间(view space),那么我们也需要在视空间的视方向。为了得到它,我们需要摄像机的 裁减到视空间(clip to view) 或者 逆投影(inverse projection) 矩阵。
但是这个矩阵在默认的屏幕shader中是不能获得的,所以我们通过C#将矩阵传递进来。

在custom postprocess中的代码:

Matrix4x4 clipToView = GL.GetGPUProjectionMatrix(context.camera.projectionMatrix, true).inverse;
sheet.properties.SetMatrix("_ClipToView", clipToView);

于是,我们就可以在vert着色器中计算视空间中的视方向了。

o.vertex = float4(v.vertex.xy, 0.0, 1.0);
o.viewSpaceDir = mul(_ClipToView, o.vertex).xyz;

3.2 使用视方向修正阈值

得到视方向后,我们就可以得到NdotV(也成为菲列尔),表示法线和视方向的重合度。

//法线在0...1范围, 视方向在 -1...1范围,需要统一范围
float3 viewNormal = normal0 * 2 - 1;
float NdotV = 1 - dot(viewNormal, -i.viewSpaceDir);

return NdotV;

得到下图:
unity 边缘检测描边,Shader,unity,shader
我们引入阈值_DepthNormalThreshold 来控制NdotV的影响范围
同时引入_DepthNormalThresholdScale控制调节范围在0 - 1之间

float normalThreshold01 = saturate((NdotV - _DepthNormalThreshold) / (1 - _DepthNormalThreshold));
float normalThreshold = normalThreshold01 * _DepthNormalThresholdScale + 1;

然后将新的法线阈值和深度阈值结合:

float depthThreshold = _DepthThreshold * depth0 * normalThreshold;

得到一个较完美的描边
unity 边缘检测描边,Shader,unity,shader
最后合并图像原有颜色:

float4 color = SAMPLE_TEXTURE2D(_MainTex, sampler_MainTex, i.texcoord);
float4 edgeColor = float4(_Color.rgb, _Color.a * edge);

return alphaBlend(edgeColor, color);

unity 边缘检测描边,Shader,unity,shader
得到最终效果图。

4 单独控制物体是否显示描边

因为是后处理,通常情况下,看到的物体都会被描边。但是我们有时候又需要排除一些不需要描边的物体。这时我们可以通过控制材质球的shaderPassEnable来实现。

public class ShaderPassController : MonoBehaviour
{
    public bool value;
    public string passName = "Always";
    // Start is called before the first frame update
    void Start()
    {
        var mat = GetComponent<Renderer>().material;
        mat.SetShaderPassEnabled(passName, value);
    }
}

用于绘制法线的Shader 没有声明Tag。此时,Unity会默认设置Tag{“LightModel”=“Always”}
此时,我们可以通过SetShaderPassEnabled 关闭Shader中Tag为"Always"的Pass. 关闭后,此物体的Shader对于法线摄像机等于没有任何Pass,所以不会被绘制。当我们给茶壶添加ShaderPassController脚本后,法线摄像机如下图:
unity 边缘检测描边,Shader,unity,shader
如果物体原本的shader使用的是“Always”Tag,为了防止被关闭Pass,可以添加tags {“LightModel”=“ForwardBase”} 来规避
此时,我们只需判断没有法线数据的点就是没有描边就可以了。

if (normal3.r == 1 && normal3.g == 1 && normal3.b == 1
	&& normal0.r == 1 && normal0.g == 1 && normal0.b == 1
	&& normal1.r == 1 && normal1.g == 1 && normal1.b == 1
	&& normal2.r == 1 && normal2.g == 1 && normal2.b == 1)
	{
		edge = 0;
	}

得到下图:
unity 边缘检测描边,Shader,unity,shader文章来源地址https://www.toymoban.com/news/detail-791801.html

OutlineShader完整代码

Shader "Hidden/Outline Post Process"
{
    SubShader
    {
        Cull Off ZWrite Off ZTest Always

        Pass
        {
			// Custom post processing effects are written in HLSL blocks,
			// with lots of macros to aid with platform differences.
			// https://github.com/Unity-Technologies/PostProcessing/wiki/Writing-Custom-Effects#shader
            HLSLPROGRAM
            #pragma vertex Vert
            #pragma fragment Frag

			#include "Packages/com.unity.postprocessing/PostProcessing/Shaders/StdLib.hlsl"

			TEXTURE2D_SAMPLER2D(_MainTex, sampler_MainTex);
			// _CameraNormalsTexture contains the view space normals transformed
			// to be in the 0...1 range.
			TEXTURE2D_SAMPLER2D(_CameraNormalsTexture, sampler_CameraNormalsTexture);
			TEXTURE2D_SAMPLER2D(_CameraDepthTexture, sampler_CameraDepthTexture);
        
			// Data pertaining to _MainTex's dimensions.
			// https://docs.unity3d.com/Manual/SL-PropertiesInPrograms.html
			float4 _MainTex_TexelSize;
            float _Scale;
            float _DepthThreshold;
            float _NormalThreshold;
            float4x4 _ClipToView;
            float _DepthNormalThreshold;
			float _DepthNormalThresholdScale;
            float4 _Color;

			// Combines the top and bottom colors using normal blending.
			// https://en.wikipedia.org/wiki/Blend_modes#Normal_blend_mode
			// This performs the same operation as Blend SrcAlpha OneMinusSrcAlpha.
			float4 alphaBlend(float4 top, float4 bottom)
			{
				float3 color = (top.rgb * top.a) + (bottom.rgb * (1 - top.a));
				float alpha = top.a + bottom.a * (1 - top.a);

				return float4(color, alpha);
			}
            struct Varyings
			{
				float4 vertex : SV_POSITION;
				float2 texcoord : TEXCOORD0;
				float2 texcoordStereo : TEXCOORD1;
				float3 viewSpaceDir : TEXCOORD2;
				#if STEREO_INSTANCING_ENABLED
					uint stereoTargetEyeIndex : SV_RenderTargetArrayIndex;
				#endif
			};

            Varyings Vert(AttributesDefault v)
			{
				Varyings o;
				o.vertex = float4(v.vertex.xy, 0.0, 1.0);
            	o.viewSpaceDir = mul(_ClipToView, o.vertex).xyz;
				o.texcoord = TransformTriangleVertexToUV(v.vertex.xy);

			#if UNITY_UV_STARTS_AT_TOP
				o.texcoord = o.texcoord * float2(1.0, -1.0) + float2(0.0, 1.0);
			#endif

				o.texcoordStereo = TransformStereoScreenSpaceTex(o.texcoord, 1.0);

				return o;
			}
            

			float4 Frag(Varyings i) : SV_Target
			{
				
				float halfScaleFloor = floor(_Scale * 0.5);
				float halfScaleCeil = ceil(_Scale * 0.5);

				float2 bottomLeftUV = i.texcoord - float2(_MainTex_TexelSize.x, _MainTex_TexelSize.y) * halfScaleFloor;
				float2 topRightUV = i.texcoord + float2(_MainTex_TexelSize.x, _MainTex_TexelSize.y) * halfScaleCeil;  
				float2 bottomRightUV = i.texcoord + float2(_MainTex_TexelSize.x * halfScaleCeil, -_MainTex_TexelSize.y * halfScaleFloor);
				float2 topLeftUV = i.texcoord + float2(-_MainTex_TexelSize.x * halfScaleFloor, _MainTex_TexelSize.y * halfScaleCeil);

				float depth0 = SAMPLE_DEPTH_TEXTURE(_CameraDepthTexture, sampler_CameraDepthTexture, bottomLeftUV).r;
				float depth1 = SAMPLE_DEPTH_TEXTURE(_CameraDepthTexture, sampler_CameraDepthTexture, topRightUV).r;
				float depth2 = SAMPLE_DEPTH_TEXTURE(_CameraDepthTexture, sampler_CameraDepthTexture, bottomRightUV).r;
				float depth3 = SAMPLE_DEPTH_TEXTURE(_CameraDepthTexture, sampler_CameraDepthTexture, topLeftUV).r;

				float3 normal0 = SAMPLE_TEXTURE2D(_CameraNormalsTexture, sampler_CameraNormalsTexture, bottomLeftUV).rgb;
				float3 normal1 = SAMPLE_TEXTURE2D(_CameraNormalsTexture, sampler_CameraNormalsTexture, topRightUV).rgb;
				float3 normal2 = SAMPLE_TEXTURE2D(_CameraNormalsTexture, sampler_CameraNormalsTexture, bottomRightUV).rgb;
				float3 normal3 = SAMPLE_TEXTURE2D(_CameraNormalsTexture, sampler_CameraNormalsTexture, topLeftUV).rgb;
	
				float3 normalFiniteDifference0 = normal1 - normal0;
				float3 normalFiniteDifference1 = normal3 - normal2;

				float edgeNormal = sqrt(dot(normalFiniteDifference0, normalFiniteDifference0) + dot(normalFiniteDifference1, normalFiniteDifference1));
				edgeNormal = edgeNormal > _NormalThreshold ? 1 : 0;
				
				float depthFiniteDifference0 = depth1 - depth0;
				float depthFiniteDifference1 = depth3 - depth2;
				float edgeDepth = sqrt(pow(depthFiniteDifference0, 2) + pow(depthFiniteDifference1, 2)) * 100;
				
				float3 viewNormal = normal0 * 2 - 1;
				float NdotV = 1 - dot(viewNormal, -i.viewSpaceDir);
				float normalThreshold01 = saturate((NdotV - _DepthNormalThreshold) / (1 - _DepthNormalThreshold));
				float normalThreshold = normalThreshold01 * _DepthNormalThresholdScale + 1;

				float depthThreshold = _DepthThreshold * depth0 * normalThreshold;
				edgeDepth = edgeDepth > depthThreshold ? 1 : 0;

				float edge = max(edgeDepth, edgeNormal);

				if (normal3.r == 1 && normal3.g == 1 && normal3.b == 1
					&& normal0.r == 1 && normal0.g == 1 && normal0.b == 1
					&& normal1.r == 1 && normal1.g == 1 && normal1.b == 1
					&& normal2.r == 1 && normal2.g == 1 && normal2.b == 1)
				{
					edge = 0;
				}
				
				float4 color = SAMPLE_TEXTURE2D(_MainTex, sampler_MainTex, i.texcoord);
				float4 edgeColor = float4(_Color.rgb, _Color.a * edge);

				return alphaBlend(edgeColor, color);
			}
			ENDHLSL
		}
    }
}

到了这里,关于Unity 基于法线和深度实现完美描边,可独立控制物体描边的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • [Unity] ShaderGraph实现Sprite图片描边/发光效果

    使用版本为:2022.3.10f1  [原始图]      [运行前]      [运行后] 更详细的实现逻辑及步骤参考CodeMonkey的视频: https://youtu.be/FvQFhkS90nI?si=zy6XRlqGnzIdQkqD OS:猴子老师,我永远的神!!! 目录 一、准备工作 二、偏移效果与颜色叠加 三、单侧描边与原理 四、另一侧与Sub管理 五、

    2024年01月20日
    浏览(58)
  • 【实现100个unity特效】shader实现3D物品闪光和描边效果

    线状映射图片 配置,按该shader新增材质 Outline Width控制描边 Line Speed控制闪光速度 当然,还可以修改对应的颜色 效果演示 赠人玫瑰,手有余香!如果文章内容对你有所帮助,请不要吝啬你的 点赞评论和关注 ,以便我第一时间收到反馈,你的每一次 支持 都是我不断创作的最

    2024年01月25日
    浏览(66)
  • Unity UGUI的Outline(描边实现事务的原子性)组件的介绍及使用

    Outline(描边)组件是Unity UGUI中的一种特效组件,用于给UI元素添加描边效果。通过设置描边的颜色、宽度和模糊程度,可以使UI元素在视觉上更加突出。 Outline(描边)组件通过在UI元素周围绘制多个相同的UI元素,并设置不同的颜色和大小,从而实现描边的效果。描边的宽度和模糊

    2024年02月22日
    浏览(57)
  • Unity中URP下的菲涅尔效果实现(URP下的法线和视线向量怎么获取)

    我们在这篇文章中,了解一下URP中Shader怎么实现菲涅尔效果,同时学习一下URP下怎么获取法线 和 视线向量。 Lambert光照模型公式: Diffuse = Ambient + Kd * LightColor * max(0,dot(N,L)) 实现灯光照射中间亮 周围暗的效果,核心是dot(N,L) Unity中Shader的Lambert光照的实现 光照效果下, 视线单

    2024年02月02日
    浏览(47)
  • 【unity实战】使用shader和shader Graph实现2d图片描边效果(附源码)

    最近在学习shader Graph相关内容,其实关于实现2d图片描边效果,网上可以看到很多教程,但是我发现大多数都是基于比较老旧的2018unity版本,可是我们实际开发使用可能是比较新的2021及以上版本,差别还是有的,实际在升级或者使用过程中,会遇到诸多问题,而且也很少有人

    2024年02月16日
    浏览(56)
  • 【实现100个unity特效之2】使用shader和shader Graph实现2d图片描边效果(附源码)

    最近在学习shader Graph相关内容,其实关于实现2d图片描边效果,网上可以看到很多教程,但是我发现大多数都是基于比较老旧的2018unity版本,可是我们实际开发使用可能是比较新的2021及以上版本,差别还是有的,实际在升级或者使用过程中,会遇到诸多问题,而且也很少有人

    2024年01月21日
    浏览(66)
  • 开源免费代码_02_单摇杆远程遥控小车,基于Arduino的ESP-NOW,ESP32发送指令、ESP32接收指令,实现小车毫秒级完美控制_公羽兴

    发文希望能够帮忙物联网爱好者少走弯路,少被割韭菜。如果觉得此文对您有帮助的话帮忙点个赞,感谢!!! 哔哩哔哩网址: 开源免费代码_02_单摇杆远程遥控小车,基于Arduino的ESP-NOW,ESP32发送指令、ESP32接收指令,实现小车毫秒级完美控制_公羽兴_哔哩哔哩_bilibili 开源免

    2024年02月05日
    浏览(66)
  • Unity基础篇-UV坐标和法线

    我们已经利用Mesh创建过简单的一个Cubel了,如果要让这个cube更精细化还需要更详细的处理,这样就就有几个绕不开的话题,涉及图形学UV坐标和法线。 UV坐标: UV坐标是用于映射2D纹理到3D模型的坐标。在3D模型上的每个顶点都有一个对应的UV坐标,它告诉引擎在纹理上的哪个

    2024年01月24日
    浏览(46)
  • Unity - 从RG中解压法线贴图

    Unity : 2020.3.37f1 Pipeline : BRP 备忘便于索引 之前使用 GPA 还原一些效果的时候,发现 法线贴图的 Y 通道数值不对,感觉被 翻转了 比方说,下面是 GPA 中的法线 这个法线是 DX 方式的,不是 OpenGL 的,如何辨别 法线是属于 DX 还是 OpenGL 的,可以参考:快速判断OpenGL和DirectX法线的技

    2024年02月12日
    浏览(84)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包