【FLink消费Kafka之FlinkConsumer到KafkaSource的转变】

这篇具有很好参考价值的文章主要介绍了【FLink消费Kafka之FlinkConsumer到KafkaSource的转变】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


前言

上篇介绍了flink的入门程序wordcount,在项目开发过程中,最常接触的还是跟各种源头系统打交道,其中消费接收kafka中的数据是最常见的情况,而flink在1.15版本后连接kafka的依赖包发生了变化,之前的flink版本使用的依赖包是flink-connector-kafka_2.1x(后面的数字代表kafka环境的scala版本),从flink1.15版本开始引用的依赖包变为flink-connector-kafka,具体的maven配置信息如下:


提示:以下为flink1.14及以下版本maven配置:

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka_2.12</artifactId>
            <version>${flink.vesrion}</version>
        </dependency> 

提示:以下为flink1.15及以上版本maven配置:

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka</artifactId>
            <version>${flink.vesrion}</version>
        </dependency> 

一、FlinkConsumer消费kafka

FlinkConsumer使用起来感觉和普通的kafka consumer java api差不多

import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import java.util.Properties;

public class FlinkConsumerTest {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        Properties properties = new Properties();
        properties.setProperty("bootstrap.servers","cdp1:9092");
        properties.setProperty("group.id","tes");
        properties.setProperty("key.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
        properties.setProperty("value.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
        properties.setProperty("auto.offset.rest","latest");

        FlinkKafkaConsumer consumer = new FlinkKafkaConsumer<>("event_topic",new SimpleStringSchema(),properties);
        consumer.setStartFromLatest();
        DataStream<String> stream = env.addSource(consumer);
        stream.print();
        env.execute();
    }
}

二、KafkaSource消费kafka

FlinkConsumer在flink1.15版本后,已经被弃用,推出了新的消费kafka的KafkaSource,文档地址为https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/connectors/datastream/kafka/

import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

public class KafkaSourceTest {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        KafkaSource<String> source = KafkaSource.<String>builder()
                .setBootstrapServers("cdp1:9092")
                .setGroupId("my_group")
                .setTopics("event_topic")
                .setStartingOffsets(OffsetsInitializer.latest())
                .setValueOnlyDeserializer(new SimpleStringSchema())
                .build();
        DataStreamSource<String> kafkaDS = env.fromSource(source, WatermarkStrategy.noWatermarks(), "kafka source");
        kafkaDS.print();
        env.execute();
    }
}


总结

改用了FLink新版本的KafkaSource后,感觉代码比之前更加简洁清晰了,但具体使用原理都差不多的,在不同版本消费kafka数据时,需要注意的是,容易出现版本不兼容的问题,最常见的错误:java.lang.NoSuchMethodError: org.apache.kafka.clients.consumer.KafkaConsumer.poll,(可通过清理maven依赖、检查端口是否能连接,以及重启等等),今天只是简单聊了下kafkasource,其实新版本的flink中还提供了kafkasink,可以直接将接收的数据流sink到指定的位置,比如hdfs或者另外一个kafka集群,由于篇幅有限,这里就不具体展开了,后续会结合实际场景持续更新。文章来源地址https://www.toymoban.com/news/detail-791812.html

到了这里,关于【FLink消费Kafka之FlinkConsumer到KafkaSource的转变】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • flink kafka消费者如何处理kafka主题的rebalance

    我们日常使用kafka客户端消费kafka主题的消息时,当消费者退出/加入消费者组,kafka主题分区数有变等事件发生时,都会导致rebalance的发生,此时一般情况下,如果我们不自己处理offset,我们不需要理会这个rebalance的,当rebalance完成后,每个消费者会从__consumer_offsets中获取每个

    2024年02月14日
    浏览(37)
  • 【Flink-Kafka-To-RocketMQ】使用 Flink 自定义 Sink 消费 Kafka 数据写入 RocketMQ

    这里的 maven 依赖比较冗余,推荐大家都加上,后面陆续优化。 注意: 1、此程序中所有的相关配置都是通过 Mysql 读取的(生产环境中没有直接写死的,都是通过配置文件动态配置),大家实际测试过程中可以将相关配置信息写死。 2、此程序中 Kafka 涉及到了 Kerberos 认证操作

    2024年02月03日
    浏览(51)
  • 大数据-玩转数据-FLINK-从kafka消费数据

    大数据-玩转数据-Kafka安装 运行本段代码,等待kafka产生数据进行消费。

    2024年02月14日
    浏览(38)
  • 流批一体计算引擎-4-[Flink]消费kafka实时数据

    Python3.6.9 Flink 1.15.2消费Kafaka Topic PyFlink基础应用之kafka 通过PyFlink作业处理Kafka数据 PyFlink需要特定的Python版本,Python 3.6, 3.7, 3.8 or 3.9。 1.3.1 python3和pip3的配置 一、系统中安装了多个版本的python3 。 二、环境变量path作用顺序 三、安装Pyflink 1.3.2 配置Flink Kafka连接 (1)在https://mvnr

    2024年02月06日
    浏览(43)
  • flink1.16使用消费/生产kafka之DataStream

    flink高级版本后,消费kafka数据一种是Datastream 一种之tableApi。 上官网 Kafka | Apache Flink 引入依赖 flink和kafka的连接器,里面内置了kafka-client 使用方法 很简单一目了然。 topic和partition  反序列化 其实就是实现接口 DeserializationSchema 的deserialize()方法 把byte转为你想要的类型。 起

    2024年02月16日
    浏览(42)
  • Idea本地跑flink任务时,总是重复消费kafka的数据(kafka->mysql)

    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Idea中执行任务时,没法看到JobManager的错误,以至于我以为是什么特殊的原因导致任务总是反复消费。在close方法中,增加日志,发现jdbc连接被关闭了。 重新消费,jdbc连接又启动了。 注意,在Flink的函数中,open和close方法

    2024年02月07日
    浏览(39)
  • 掌握实时数据流:使用Apache Flink消费Kafka数据

            导读:使用Flink实时消费Kafka数据的案例是探索实时数据处理领域的绝佳方式。不仅非常实用,而且对于理解现代数据架构和流处理技术具有重要意义。         Apache Flink  是一个在 有界 数据流和 无界 数据流上进行有状态计算分布式处理引擎和框架。Flink 设计旨

    2024年02月03日
    浏览(81)
  • flink如何初始化kafka数据源的消费偏移

    我们知道在日常非flink场景中消费kafka主题时,我们只要指定了消费者组,下次程序重新消费时是可以从上次消费停止时的消费偏移开始继续消费的,这得益于kafka的_offset_主题保存的关于消费者组和topic偏移位置的具体偏移信息,那么flink应用中重启flink应用时,flink是从topic的什

    2024年02月16日
    浏览(48)
  • Kafka系列之:记录一次Kafka Topic分区扩容,但是下游flink消费者没有自动消费新的分区的解决方法

    生产环境Kafka集群压力大,Topic读写压力大,消费的lag比较大,因此通过扩容Topic的分区,增大Topic的读写性能 理论上下游消费者应该能够自动消费到新的分区,例如flume消费到了新的分区,但是实际情况是存在flink消费者没有消费到新的分区 出现无法消费topic新的分区这种情况

    2024年02月14日
    浏览(56)
  • Flink 消费Kafka每日不定时积压(非重启不能解决)问题排查解决

    1. 背景         接手了一个问题排查的工作,有个Flink任务每天不定时会出现数据积压,无论是白天还是数据量很少的夜里,且积压的数据量会越来越多,得不到缓解,只能每日在积压告警后重启,重启之后消费能力一点毛病没有,积压迅速缓解,然而,问题会周而复始的

    2024年02月09日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包