参考:代码随想录
300.最长递增子序列
1. dp[i]的定义
本题中,正确定义dp数组的含义十分重要。
dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度
为什么一定表示 “以nums[i]结尾的最长递增子序” ,因为我们在 做 递增比较的时候,如果比较 nums[j] 和 nums[i] 的大小,那么两个递增子序列一定分别以nums[j]为结尾 和 nums[i]为结尾, 要不然这个比较就没有意义了,不是尾部元素的比较那么 如何算递增呢。
2. 状态转移方程
位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值。
所以:if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
注意这里不是要dp[i] 与 dp[j] + 1进行比较,而是我们要取dp[j] + 1的最大值。
3. dp[i]的初始化
每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1. 因为只有一个数字,就是最小值1
4. 确定遍历顺序
dp[i] 是有0到i-1各个位置的最长递增子序列 推导而来,那么遍历i一定是从前向后遍历。
j其实就是遍历0到i-1,那么是从前到后,还是从后到前遍历都无所谓,只要吧 0 到 i-1 的元素都遍历了就行了。 所以默认习惯 从前向后遍历。
遍历i的循环在外层,遍历j则在内层,代码如下:
for (int i = 1; i < nums.size(); i++) {
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
}
if (dp[i] > result) result = dp[i]; // 取长的子序列
}
最后结果是dp数组中的最大值:因为以最后一个数结尾的不一定能是最长的结果,比如最后一个数是最小值,那么dp[len-1]=1
674. 最长连续递增序列
与上一题区别由于要求连续的,所以就只要比较nums[i]与nums[i - 1],而不用去比较nums[j]与nums[i] (j是在0到i之间遍历)。
返回的时候是dp数组的最大值
贪心法
public static int findLengthOfLCIS(int[] nums) {
if (nums.length == 0) return 0;
int res = 1; // 连续子序列最少也是1
int count = 1;
for (int i = 0; i < nums.length - 1; i++) {
if (nums[i + 1] > nums[i]) { // 连续记录
count++;
} else { // 不连续,count从头开始
count = 1;
}
if (count > res) res = count;
}
return res;
}
718. 最长重复子数组
1. dp数组含义:
dp[i][j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。 (特别注意: “以下标i - 1为结尾的A” 标明一定是 以A[i-1]为结尾的字符串 )
i = 0/j=0代表没有可以选择的下标
2. 递推公式
A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;
3.初始化
dp[i][0] 和dp[0][j]其实都是没法匹配的,可以理解为是0的那边为空集,空集肯定是没发匹配的所以
dp[i][0] 和dp[0][j]都初始为0
4. 遍历顺序
根据递推公式,dp[i][j]只跟dp[i - 1][j - 1]有关,所以只要两个循环由小到大遍历,循环内外顺序并不重要
滚动数组
在如下图中:
我们可以看出dp[i][j]都是由dp[i - 1][j - 1]推出。那么压缩为一维数组,也就是dp[j]都是由dp[j - 1]推出。
也就是相当于可以把上一层dp[i - 1][j]拷贝到下一层dp[i][j]来继续用。文章来源:https://www.toymoban.com/news/detail-791949.html
此时遍历B数组的时候,就要从后向前遍历,这样避免重复覆盖。文章来源地址https://www.toymoban.com/news/detail-791949.html
class Solution {
public int findLength(int[] nums1, int[] nums2) {
int[] dp = new int[nums2.length + 1];
int result = 0;
for (int i = 1; i <= nums1.length; i++) {
for (int j = nums2.length; j > 0; j--) {
if (nums1[i - 1] == nums2[j - 1]) {
dp[j] = dp[j - 1] + 1;
} else {
dp[j] = 0;
}
result = Math.max(result, dp[j]);
}
}
return result;
}
}
到了这里,关于day52 算法训练|动态规划part13的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!