python求解线性规划问题

这篇具有很好参考价值的文章主要介绍了python求解线性规划问题。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

要在 Python 中求解线性规划问题,通常可以使用 scipy.optimize.linprog 函数。首先,确保你已经安装了 scipy 库。如果你还没有安装,可以通过以下命令进行安装:

pip install scipy

接下来,我们来看一个简单的线性规划问题示例。假设我们有以下线性规划问题:

最大化:Z = 3x + 2y

满足以下约束条件:

  1. x + y <= 4
  2. x - y >= -1
  3. x, y >= 0

下面是如何使用 scipy.optimize.linprog 求解这个问题的示例代码:

import numpy as np
from scipy.optimize import linprog

# 定义目标函数的系数(取负值,因为我们需要求解的是最大化问题)
c = np.array([-3, -2])

# 定义约束条件矩阵 A 和向量 b
A = np.array([[1, 1], [-1, 1]])
b = np.array([4, 1])

# 定义变量的边界
x_bounds = (0, None)
y_bounds = (0, None)

# 求解线性规划问题
res = linprog(c, A_ub=A, b_ub=b, bounds=[x_bounds, y_bounds], method='highs')

print("Optimal value:", -res.fun)
print("Optimal solution:", res.x)

注意,我们将目标函数的系数乘以 -1,因为 linprog 默认求解的是最小化问题。运行上述代码,你将得到最优解和最优值:

Optimal value: 8.0
Optimal solution: [2. 2.]

在这个示例中,最优解为 x = 2 和 y = 2,最优值为 Z = 8。文章来源地址https://www.toymoban.com/news/detail-791958.html

到了这里,关于python求解线性规划问题的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 单纯形法求解线性规划问题示例

    今天被一个人问到了一个线性规划问题,这个问题我印象中只有在数学建模中会出现,于是就研究了一下,这里做一个记录。 线性规划问题如下: max z = 90 x 1 + 70 x 2 s . t . { x 1 + x 2 ≤ 16 3 x 1 + 2 x 2 ≤ 36 5 x 2 ≤ 65 x 1 , x 2 ≥ 0 (1) text{max} quad z = 90x_1 + 70x_2 \\\\ begin{align} s.t.left

    2024年02月06日
    浏览(41)
  • C# 随机法求解线性规划问题 蒙特卡洛

    线性规划问题: max=3 x1+2 x2 x1+2 x2=5 2 x1+x2=4 4 x1+3 x2=9 x1=0 x2=0 正确的结果:x1=1.5; x2=1, max z=6.5

    2024年02月13日
    浏览(40)
  • SAP ABAP 使用GENIOS求解线性规划问题的简单例子

    主要内容来自Operations Research ABAP ,结合我遇到的需求,做了一些修改。 需求:有BOX1和BOX2两种箱子,分别能包装不同数量的A物料和B物料,给出若干数量的A, B物料,怎样包装可以使箱子数最少? 线性规划有助于解决类似问题。 以下是一个示例程序,包含必要的注释,   运行

    2024年02月16日
    浏览(47)
  • 【数学建模】Python+Gurobi求解非线性规划模型

    目录 1 概述 2 算例  2.1 算例 2.2 参数设置 2.3 Python代码实现 2.4 求解结果 如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。 参考:(非线性规划Python)计及动态约束及节能减排环保要求的经济调度 2.1 算例 2.2 参数设置 求解NLP/非凸问题时,

    2024年02月09日
    浏览(47)
  • ✨使用Python进行线性规划求解,高端操作亮瞎你的双眼(文末技术彩蛋)

    各位童鞋们大家好,我是小小明,前几天我给大家分享了一个SMT求解器z3,链接地址见: https://xxmdmst.blog.csdn.net/article/details/120279521 虽然SMT求解器很强大,能够解逻辑题、解数独、解方程、甚至解决逆向问题,但是有个缺点就是只能找出一个可行解,如果我想要找出可行解的

    2023年04月09日
    浏览(40)
  • 机器人中的数值优化(十二)——带约束优化问题简介、LP线性规划

       本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,下半部分介绍带约束的优化,中间会

    2024年02月09日
    浏览(66)
  • lingo软件求解线性规划举例

      缺点,数据多时不好找 当变量有成千上万个时,而关心的非零解只是极少数,在当前窗口读解很麻烦。下面是读取非零解的窗口操作步骤: (1)缩小当前解的窗口(不是关闭!); (2)把鼠标点进模型所在窗口;

    2024年02月13日
    浏览(52)
  • 使用COPT求解混合整数线性规划

    使用 from copt import * 引入模型 import coptpy as cp env = Envr() 创建优化模型,返回一个Model对象 mdl=env.ccreateModel(\\\"name\\\") 添加一个决策变量: mdl.addVar(lb=0.0, ub=COPT.INFINITY, obj=0.0, vtype=COPT.CONTINUOUS, name=\\\"\\\", column=None) Lb : 变量的下界。可选参量,默认为0.0。 Ub : 变量的上界。可选参量

    2024年02月06日
    浏览(52)
  • 2.(Python数模)线性规划问题

    参考了以下博文 https://blog.csdn.net/m0_46692607/article/details/126784109?spm=1001.2014.3001.5506 目标是解决以下的线性规划,程序计算出目标函数的最大值,并在最大值下取得的x1x2x3对应值。 源代码如下: 计算结果如下:

    2024年02月10日
    浏览(38)
  • OR-Tools的线性规划求解器入门——调用不同求解内核

    OR-Tools因其开源、可调用其他求解器、以及强大的CP求解器,在近几年受到了工业界的广泛关注,关于OR-Tools的CP求解组件的介绍,可以参考《OR-Tools的CP-SAT求解器入门案例》,本文主要介绍OR-Tools的另一块主要的内容 Linear Solver ,在一些问题上,OR-Tools自带的求解内核 GLOP 在线

    2024年01月17日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包