分类预测 | Matlab实现ZOA-CNN-MATT-SVM斑马优化卷积神经网络多头注意力机制结合支持向量机的数据分类预测【24年新算法】

这篇具有很好参考价值的文章主要介绍了分类预测 | Matlab实现ZOA-CNN-MATT-SVM斑马优化卷积神经网络多头注意力机制结合支持向量机的数据分类预测【24年新算法】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

分类预测 | Matlab实现ZOA-CNN-MATT-SVM斑马优化卷积神经网络多头注意力机制结合支持向量机的数据分类预测【24年新算法】

分类效果

分类预测 | Matlab实现ZOA-CNN-MATT-SVM斑马优化卷积神经网络多头注意力机制结合支持向量机的数据分类预测【24年新算法】,分类预测,ZOA-CNN-MATT,CNN-MATT-SVM,斑马优化,卷积神经网络多头注意力机制,支持向量机,数据分类预测
分类预测 | Matlab实现ZOA-CNN-MATT-SVM斑马优化卷积神经网络多头注意力机制结合支持向量机的数据分类预测【24年新算法】,分类预测,ZOA-CNN-MATT,CNN-MATT-SVM,斑马优化,卷积神经网络多头注意力机制,支持向量机,数据分类预测
分类预测 | Matlab实现ZOA-CNN-MATT-SVM斑马优化卷积神经网络多头注意力机制结合支持向量机的数据分类预测【24年新算法】,分类预测,ZOA-CNN-MATT,CNN-MATT-SVM,斑马优化,卷积神经网络多头注意力机制,支持向量机,数据分类预测
分类预测 | Matlab实现ZOA-CNN-MATT-SVM斑马优化卷积神经网络多头注意力机制结合支持向量机的数据分类预测【24年新算法】,分类预测,ZOA-CNN-MATT,CNN-MATT-SVM,斑马优化,卷积神经网络多头注意力机制,支持向量机,数据分类预测

基本描述

1.Matlab实现ZOA-CNN-MATT-SVM斑马优化卷积神经网络多头注意力机制结合支持向量机的数据分类预测【24年新算法】(完整源码和数据)ZOA斑马优化的基本灵感来自斑马在自然界中的行为。ZOA模拟了斑马的觅食行为及其对捕食者攻击的防御策略。
2.自带数据,多输入,单输出,多分类。图很多,包括迭代曲线图、混淆矩阵图、预测效果图等等。
3.直接替换数据即可使用,保证程序可正常运行。运行环境MATLAB2023及以上。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整程序和数据私信博主回复Matlab实现ZOA-CNN-MATT-SVM斑马优化卷积神经网络多头注意力机制结合支持向量机的数据分类预测
%%  参数设置
%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法
    'MaxEpochs', 500,...                 % 最大训练次数 
    'InitialLearnRate', best_lr,...          % 初始学习率为0.001
    'L2Regularization', best_l2,...         % L2正则化参数
    'LearnRateSchedule', 'piecewise',...  % 学习率下降
    'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1
    'Shuffle', 'every-epoch',...          % 每次训练打乱数据集
    'ValidationPatience', Inf,...         % 关闭验证
    'Plots', 'training-progress',...      % 画出曲线
    'Verbose', false);

%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);


参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229文章来源地址https://www.toymoban.com/news/detail-793083.html

到了这里,关于分类预测 | Matlab实现ZOA-CNN-MATT-SVM斑马优化卷积神经网络多头注意力机制结合支持向量机的数据分类预测【24年新算法】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 分类预测 | MATLAB实现MTBO-CNN多输入分类预测

    预测效果 基本介绍 1.MATLAB实现MTBO-CNN多输入分类预测 2.代码说明:基于登山队优化算法(MTBO)、卷积神经网络(CNN)的数据分类预测程序。 程序平台:要求于Matlab 2021版及以上版本。 特点: 通过登山队优化算法优化学习率、卷积核大小、卷积核个数,这3个关键参数,以测试

    2024年02月12日
    浏览(44)
  • 分类预测 | MATLAB实现EVO-CNN多输入分类预测

    预测效果 基本介绍 1.MATLAB实现EVO-CNN多输入分类预测 2.代码说明:量谷优化卷积神经网络的数据分类预测:要求于Matlab 2021版及以上版本。 特点: 多行变量特征输入,优化了学习率、卷积核大小及卷积核个数等,方便增加维度优化其它参数。能量谷优化算法(Energy valley opti

    2024年02月12日
    浏览(45)
  • 分类预测 | MATLAB实现DBN-SVM深度置信网络结合支持向量机多输入分类预测

    预测效果 基本介绍 1.分类预测 | MATLAB实现DBN-SVM深度置信网络结合支持向量机多输入分类预测 2.代码说明:要求于Matlab 2021版及以上版本。 程序设计 完整程序和数据获取方式1:同等价值程序兑换; 完整程序和数据获取方式2:私信博主回复 MATLAB实现DBN-SVM深度置信网络结合支

    2024年02月12日
    浏览(40)
  • 分类预测 | MATLAB实现CNN-BiGRU-Attention多输入分类预测

    预测效果 基本介绍 Matlab实现CNN-BiGRU-Attention多特征分类预测,卷积双向门控循环单元结合注意力机制分类预测。 1.data为数据集,格式为excel,12个输入特征,输出4类标签; 2.MainCNN_BiGRU_AttentionNC.m为主程序文件,运行即可; 3.可视化展示分类准确率,可在下载区获取数据和程序

    2024年02月13日
    浏览(67)
  • 分类预测 | MATLAB实现CNN-GRU-Attention多输入分类预测

    分类效果 模型描述 Matlab实现CNN-GRU-Attention多变量分类预测 1.data为数据集,格式为excel,12个输入特征,输出四个类别; 2.MainCNN-GRU-AttentionNC.m为主程序文件,运行即可; 注意程序和数据放在一个文件夹,运行环境为Matlab2020b及以上。 4.注意力机制模块: SEBlock(Squeeze-and-Excita

    2023年04月08日
    浏览(44)
  • 回归预测 | Matlab实现POA-CNN-SVM鹈鹕算法优化卷积神经网络-支持向量机多变量回归预测

    效果一览 基本介绍 1.POA-CNN-SVM鹈鹕算法优化卷积神经网络-支持向量机的多变量回归预测 可直接运行Matlab; 2.评价指标包括: R2、MAE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。要求2021版本及以上。 3.鹈鹕算法POA优化的参数为:CNN的批处理大小、学习率、正则化系数,能

    2024年02月05日
    浏览(54)
  • 分类预测 | Matlab实现CS-SVM布谷鸟算法优化支持向量机的数据分类预测

    分类效果 基本描述 1.Matlab实现CS-SVM布谷鸟算法优化支持向量机的数据分类预测。 2.自带数据,多输入,单输出,多分类。优化参数为:SVM的gamma和c。图很多,包括迭代曲线图、混淆矩阵图、预测效果图等等 3.直接替换数据即可使用,保证程序可正常运行。运行环境MATLAB2018及

    2024年01月17日
    浏览(47)
  • 分类预测 | MATLAB实现MIV-SVM的平均影响值MIV算法结合支持向量机分类预测

    分类效果 基本介绍 先利用平均影响值MIV算法对特征进行排序,确定分类特征变量做特征重要性排序,实现特征选择。 最终MIV结合SVM做分类建模,输出有分类对比图和混淆矩阵图。 通过重要性排序图,选择重要的特征变量,以期实现数据降维的目的。程序直接替换数据就可以

    2024年02月11日
    浏览(39)
  • 分类预测 | MATLAB实现WOA-CNN-BiLSTM-Attention数据分类预测

    分类效果 基本描述 1.MATLAB实现WOA-CNN-BiLSTM-Attention数据分类预测,运行环境Matlab2021b及以上; 2.基于鲸鱼优化算法(WOA)、卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的数据分类预测程序; 3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就

    2024年02月12日
    浏览(35)
  • 分类预测 | MATLAB实现WOA-CNN-BiGRU-Attention数据分类预测

    分类效果 基本描述 1.Matlab实现WOA-CNN-BiGRU-Attention多特征分类预测,多特征输入模型,运行环境Matlab2023及以上; 2.通过WOA优化算法优化学习率、卷积核大小、神经元个数,这3个关键参数,以测试集精度最高为目标函数; 3.多特征输入单输出的二分类及多分类模型。程序内注释

    2024年02月12日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包