深入理解 Flink(六)Flink Job 提交和 Flink Graph 详解

这篇具有很好参考价值的文章主要介绍了深入理解 Flink(六)Flink Job 提交和 Flink Graph 详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

深入理解 Flink 系列文章已完结,总共八篇文章,直达链接:
深入理解 Flink (一)Flink 架构设计原理
深入理解 Flink (二)Flink StateBackend 和 Checkpoint 容错深入分析
深入理解 Flink (三)Flink 内核基础设施源码级原理详解
深入理解 Flink (四)Flink Time+WaterMark+Window 深入分析
深入理解 Flink (五)Flink Standalone 集群启动源码剖析
深入理解 Flink (六)Flink Job 提交和 Flink Graph 详解
深入理解 Flink (七)Flink Slot 管理详解
深入理解 Flink (八)Flink Task 部署初始化和启动详解

Flink Program 编程套路回顾

1、获取执行环境对象
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
2、通过执行环境对象,注册数据源 Source,得到数据抽象
DataStream ds = env.socketTextStream(...)
3、调用数据抽象的各种Transformation执行逻辑计算
DataStream resultDS = ds.flatMap(...).keyBy(...).sum(...);
4、将各种Transformation执行完毕之后得到的计算结果数据抽象注册 Sink
resultDS.addSink(...)
5、提交Job执行
env.execute(...)

Flink Job 提交脚本解析

# Submission to an already running Flink on YARN cluster
./bin/flink run --target yarn-session
# Submission spinning up a Flink on YARN cluster in Per-Job Mode
./bin/flink run --target yarn-per-job
# Submission spinning up Flink on YARN cluster in Application Mode
./bin/flink run-application --target yarn-application

具体可以参考官网:
https://ci.apache.org/projects/flink/flink-docs-stable/deployment/cli.html
https://ci.apache.org/projects/flink/flink-docs-stable/deployment/cli.html#advanced-cli

CliFrontend 提交分析

当用户把 Flink 应用程序打成 jar 使用 flink run … 的 shell 命令提交的时候,底层是通过 CliFrontend 来处理。底层的逻辑,就是通过反射来调用用户程序的 main() 方法执行。
需要注意的是,Application 模式下,会通过 YarnClusterDescriptor.deployInternal 方法在 yarn 中部署一个 application 集群,返回 YarnRestClusterClient 对象。yarn 中会启动一个 EmbeddedJobClient,执行 submitJob 方法提交 jobGraph。

ExecutionEnvironment 源码解析

StreamExecutionEnvironment 是 Flink 应用程序的执行入口,提供了一些重要的操作机制:

1、提供了 readTextFile(), socketTextStream(), createInput(), addSource() 等方法去对接数据源。
2、提供了 setParallelism() 设置应用程序的并行度。
3、StreamExecutionEnvironment 管理了 ExecutionConfig 对象,该对象负责 Job 执行的一些行为配置管理。还管理了 Configuration 管理一些其他的配置。这个所谓的其他配置,还包含了 Checkpoint 的配置,这个 chekcpoint 的配置参数,会单独解析出来,存储在 CheckpontConfig 中
4、StreamExecutionEnvironment 管理了一个 List<Transformation<?>> transformations 成员变量,该成员变量,主要用于保存 Job 的各种算子转化得到的 Transformation,把这些 Transformation 按照逻辑拼接起来,就能得到 StreamGragh, 注意转换顺序:
UserFunction ==> StreamOperator ==> Transformation ==> StreamNode
5、StreamExecutionEnvironment 提供了 execute() 方法主要用于提交 Job 执行。该方法接收的参数就是:StreamGraph

Flink on YARN Per-job 模式提交流程分析

入口类:ApplicatoinMaster: YarnJobClusterEntryPoint
深入理解 Flink(六)Flink Job 提交和 Flink Graph 详解,大数据,flink,大数据,hadoop,分布式
深入理解 Flink(六)Flink Job 提交和 Flink Graph 详解,大数据,flink,大数据,hadoop,分布式

Job提交流程源码分析

getStreamGraph(jobName) 生成 StreamGraph 解析

// 入口
StreamGraph streamGraph = getStreamGraph(jobName, true){
    // 通过 StreamGraphGenerator 来生成 StreamGraph
    StreamGraph streamGraph = getStreamGraphGenerator().setJobName(jobName).generate(){
        streamGraph = new StreamGraph(....)
        for(Transformation<?> transformation : transformations) {
            transform(transformation);
        }
    }
}

transform(transformation){
    // 先递归处理该 Transformation 的输入
    Collection<Integer> inputIds = transform(transform.getInput());
    // 将 Transformation 变成 Operator 设置到 StreamGraph 中,其实就是添加 StreamNode
    streamGraph.addOperator(....);
    // 设置该 StreamNode 的并行度
    streamGraph.setParallelism(transform.getId(), parallelism);
    // 设置该 StreamNode 的入边 SreamEdge
    for(Integer inputId : inputIds) {
        streamGraph.addEdge(inputId, transform.getId(), 0);
        // 内部实现
        // 构建 StreamNode 之间的 边(StreamEdge) 对象
        StreamEdge edge = new StreamEdge(upstreamNode, downstreamNode, ...){
            // TODO_MA 注释: 给 上游 StreamNode 设置 出边
            getStreamNode(edge.getSourceId()).addOutEdge(edge);
        }
        // TODO_MA 注释: 给 下游 StreamNode 设置 入边
        getStreamNode(edge.getTargetId()).addInEdge(edge);
    }
}

execute(StreamGraph) 解析

// 入口
JobClient jobClient = executeAsync(streamGraph){
    // 执行一个 SreamGraph
    executorFactory.getExecutor(configuration).execute(streamGraph, configuration){
        // 第一件事:由 StreamGraph 生成 JobGragh
        JobGraph jobGraph = PipelineExecutorUtils.getJobGraph(pipeline, configuration);
        // 第二件事:通过 RestClusterClient 提交 JobGraph 到Flink集群
        clusterClient.submitJob(jobGraph)
    }
}

// 通过 RestClusterClient 来提交 JobGraph
RestClusterClient.submitJob(JobGraph jobGraph){
    // 继续提交
    RestClusterClient.sendRetriableRequest(){
        // 通过 RestClient 提交
        RestClient.sendRequest(webMonitorHost, webMonitorPort, ...){
            // 继续提交
            RestClient.submitRequest(targetAddress,targetPort,httpRequest,responseType)
        }
    }
}

最终通过 channel 把请求数据,发给 WebMonitorEndpoint 中的 JobSubmitHandler 来执行处理。

小结

01、用户根据 Flink 应用程序的编写套路,写好应用程序,打成 jar 包,通过 flink run 的命令来执行提交
02、这个命令的底层,其实是执行: CliFrontend 组件来执行提交
03、这个 CliFrontend 的内部,会通过反射的技术,来转交执行到用户自定义应用程序的 main()
04、先获取 StreamExecutionEnvironment 执行环境对象实例
05、执行算子:其实就是从 算子 ---> function ---> StreamOperator ---> Transformation
06、执行 StreamExecutionEnvironment 的 executor 方法来执行提交
07、首先遍历 StreamExecutionEnvironment 的 transformations 这个 list 来生成 StreamGraph,之后会继续被构建成 JobGraph
08、具体的内部的提交是通过 RestClusterClient 来执行提交
09、在通过 RestClusterClient 提交之前,其实还会做一件事:把 SreamGraph 变成 JobGraph,也还会先把 JobGraph 持久化成为一个磁盘文件
10、在这个 RestClusterClient 的内部,其实是通过 RestClient 来提交
11、RestClient 其实在初始化的时候,就初始化了一个 Netty 客户端
12、通过封装一个 HttpRequest 对象,包含了需要提交的 JobGraph 文件和 Jar 包等,通过 Netty 客户端链接服务端,发送请求对象到服务端
13、Flink 主节点 JobManager 负责处理这个请求的是 WebMonitorEndpoint 中的 Netty 服务端,接收到 rest 请求会调用 Router 执行 route 处理,找到对应的 Handler 执行处理。提交 Job 对应的 Handler 是 JobSubmitHandler

深入理解 Flink(六)Flink Job 提交和 Flink Graph 详解,大数据,flink,大数据,hadoop,分布式

WebMonitorEndpoint 处理 RestClient 的 JobSubmit 请求

最终处理这个请求: Flink 主节点 JobManager 负责处理这个请求的是 WebMonitorEndpoint 中的 Netty 服务端,接收到 rest 请求会调用 Router 执行 route 处理,找到对应的 Handler 执行处理。提交 Job 对应的 Handler 是 JobSubmitHandler。

// JobManager 服务端处理入口
JobSubmitHandler.handleRequest(){
    // 恢复得到 JobGraph
    JobGraph jobGraph = loadJobGraph(requestBody, nameToFile);
    // 通过 Dispatcher 提交 JobGraph
    Dispatcher.submitJob(jobGraph, timeout);
}

JobMaster 启动源码剖析

关键方法: jobMasterServiceFactory.createJobMasterService
核心的工作是:

  • 创建 JobMaster 这个 RpcEndpoint 组件,负责通信。内部会创建一个 DefaultScheduler 调度组件,在初始化该调度组件的时候,会调用 ExecutionGraphFactory 的相关方法,来把 JobGraph 转换成 ExectionGraph
  • JobMaster 启动,跳转到 onStart() 方法。内部的主要工作,就是以下这三:
    • 启动心跳机制,维持和 ResourceManager,和 TaskExecutor 之间的心跳
    • 启动 SlotPoolImpl 这个 slot 管理组件。
    • 从 ZK 获取 ResourceManager 的地址,从而进行 JobMaster 向 ResourceManager 的注册
  • 启动的这个 JobMaster 负责这个 Job 中的所有的 Task 的 slot 的申请和 任务的派发,状态的跟踪,容错,还有 checkpoint等各种操作

JobMaster 和 ResourceManager/TaskExecutor 的心跳

深入理解 Flink(六)Flink Job 提交和 Flink Graph 详解,大数据,flink,大数据,hadoop,分布式

JobMaster 向 ResourceManager 注册

// 启动 JobMaster
jobMaster.start(){
    JobMaster.onStart(){
        startJobExecution(){
            // 第一件大事:启动 JobMaster 必要的一些工作
            startJobMasterServices(){
                // 第一件事: 启动心跳机制
                this.taskManagerHeartbeatManager = createTaskManagerHeartbeatManager(heartbeatServices);
                this.resourceManagerHeartbeatManager = createResourceManagerHeartbeatManager(heartbeatServices);
                // 第二件事: 启动 SlotPoolImpl
                slotPoolService.start(getFencingToken(), getAddress(), getMainThreadExecutor());
                // 第三件事: 从 ZK 获取 ResourceManager 的地址
                // 这儿就是 JobMaster 向 ResourceManager 执行注册的入口
                resourceManagerLeaderRetriever.start(new ResourceManagerLeaderListener());
            }
            // 第二件大事:开始调度执行
            startScheduling();
        }
    }
}
ResourceManager.registerJobManager(){
    // ResourceManager 关于 JobMaster 的注册内部实现,重要的事情做了四件
    registerJobMasterInternal(jobMasterGateway, jobId, ....){
        // TODO_MA 马中华 注释: 生成 JobMaster 注册对象
        JobManagerRegistration jobManagerRegistration = new JobManagerRegistration(jobId, jobManagerResourceId, ....);
        // TODO_MA 马中华 注释: 完成注册
        jobManagerRegistrations.put(jobId, jobManagerRegistration);
        jmResourceIdRegistrations.put(jobManagerResourceId, jobManagerRegistration);
        // TODO_MA 马中华 注释: 加入心跳管理
        jobManagerHeartbeatManager.monitorTarget(jobManagerResourceId, new HeartbeatTarget<Void>() {});
        // TODO_MA 马中华 注释: 返回 JobMaster 注册成功
        return new JobMasterRegistrationSuccess(getFencingToken(), resourceId);
    }
}

Flink Graph 演变

深入理解 Flink(六)Flink Job 提交和 Flink Graph 详解,大数据,flink,大数据,hadoop,分布式

StreamGraph 构建和提交源码解析

深入理解 Flink(六)Flink Job 提交和 Flink Graph 详解,大数据,flink,大数据,hadoop,分布式
关于 StreamNode 的定义:

public class StreamNode {
    private final int id;
    private int parallelism;
    private List<StreamEdge> inEdges = new ArrayList<StreamEdge>();
    private List<StreamEdge> outEdges = new ArrayList<StreamEdge>();
    private final Class<? extends AbstractInvokable> jobVertexClass;
}

关于 StreamEdge 的定义:

public class StreamEdge implements Serializable {
    private final String edgeId;
    private final int sourceId;
    private final int targetId;
}

JobGraph 构建和提交源码解析

JobGraph: StreamGraph 经过优化后生成了 JobGraph,提交给 Flink 集群的数据结构。它包含的主要抽象概念有:

1、JobVertex:经过优化后符合条件的多个 StreamNode 可能会 chain 在一起生成一个 JobVertex,即一个JobVertex 包含一个或多个 operator,JobVertex 的输入是 JobEdge,输出是 IntermediateDataSet。
2、IntermediateDataSet:表示 JobVertex 的输出,即经过 operator 处理产生的数据集。producer 是 JobVertex,consumer 是 JobEdge。
3、JobEdge:代表了 job graph 中的一条数据传输通道。source 是 IntermediateDataSet,target 是 JobVertex。即数据通过 JobEdge 由 IntermediateDataSet 传递给目标 JobVertex。

在 StreamGraph 构建 JobGragh 的过程中,最重要的事情就是 operator 的 chain 优化,那么到底什么样的情况的下 Operator 能chain 在一起呢 ?答案是要满足以下 9 个条件:

// 1、下游节点的入度为1 (也就是说下游节点没有来自其他节点的输入)
downStreamVertex.getInEdges().size() == 1;
// 2、上下游节点都在同一个 slot group 中
upStreamVertex.isSameSlotSharingGroup(downStreamVertex);
// 3、前后算子不为空
!(downStreamOperator == null || upStreamOperator == null);
// 4、上游节点的 chain 策略为 ALWAYS 或 HEAD(只能与下游链接,不能与上游链接,Source 默认是 HEAD)
!upStreamOperator.getChainingStrategy() == ChainingStrategy.NEVER;
// 5、下游节点的 chain 策略为 ALWAYS(可以与上下游链接,map、flatmap、filter 等默认是 ALWAYS)
!downStreamOperator.getChainingStrategy() != ChainingStrategy.ALWAYS;
// 6、两个节点间物理分区逻辑是 ForwardPartitioner
(edge.getPartitioner() instanceof ForwardPartitioner);
// 7、两个算子间的 shuffle 方式不等于批处理模式
edge.getShuffleMode() != ShuffleMode.BATCH;
// 8、上下游的并行度一致
upStreamVertex.getParallelism() == downStreamVertex.getParallelism();
// 9、用户没有禁用 chain
streamGraph.isChainingEnabled();

深入理解 Flink(六)Flink Job 提交和 Flink Graph 详解,大数据,flink,大数据,hadoop,分布式
构建逻辑的重点代码:

1、在 connect 之间,调用的 createChain() 就是先执行优化,然后再生成 JobVertex
2、然后 调用 connect 之后,是为了组织关系
    1、先生成 IntermediateDataSet 和 JobEdge
    2、把 IntermediateDataSet 和 当前 JobVertex 设置为 JobEdge 的 source 和 target
    3、把 JobEdge 设置为这个 IntermediateDataSet 的消费者

关于 JobVertex 的定义:

public class JobVertex implements java.io.Serializable {
    private final JobVertexID id;
    private final ArrayList<IntermediateDataSet> results = new ArrayList<>();
    private final ArrayList<JobEdge> inputs = new ArrayList<>();
    private int parallelism = ExecutionConfig.PARALLELISM_DEFAULT;
    private String invokableClassName;
}

关于 IntermediateDataSet 的定义:

public class IntermediateDataSet implements java.io.Serializable {
    private final IntermediateDataSetID id;
    private final JobVertex producer;
    private final List<JobEdge> consumers = new ArrayList<JobEdge>();
}

关于 JobEdge 的定义:文章来源地址https://www.toymoban.com/news/detail-793426.html

public class JobEdge implements java.io.Serializable {
    private final JobVertex target;
    private IntermediateDataSet source;
    private IntermediateDataSetID sourceId;
}

到了这里,关于深入理解 Flink(六)Flink Job 提交和 Flink Graph 详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【天衍系列 01】深入理解Flink的 FileSource 组件:实现大规模数据文件处理

    Apache Flink 是一个流式处理框架,被广泛应用于大数据领域的实时数据处理和分析任务中。在 Flink 中,FileSource 是一个重要的组件,用于从文件系统中读取数据并将其转换为 Flink 的数据流。本文将深入探讨 FileSource 的工作原理、用法以及与其他数据源的比较。 FileSource 是 Fli

    2024年02月21日
    浏览(53)
  • 深入理解 Flink(一)Flink 架构设计原理

    深入理解 Flink 系列文章已完结,总共八篇文章,直达链接: 深入理解 Flink (一)Flink 架构设计原理 深入理解 Flink (二)Flink StateBackend 和 Checkpoint 容错深入分析 深入理解 Flink (三)Flink 内核基础设施源码级原理详解 深入理解 Flink (四)Flink Time+WaterMark+Window 深入分析 深入

    2024年02月02日
    浏览(44)
  • 深入理解 Flink(四)Flink Time+WaterMark+Window 深入分析

    深入理解 Flink 系列文章已完结,总共八篇文章,直达链接: 深入理解 Flink (一)Flink 架构设计原理 深入理解 Flink (二)Flink StateBackend 和 Checkpoint 容错深入分析 深入理解 Flink (三)Flink 内核基础设施源码级原理详解 深入理解 Flink (四)Flink Time+WaterMark+Window 深入分析 深入

    2024年01月24日
    浏览(47)
  • 【天衍系列 04】深入理解Flink的ElasticsearchSink组件:实时数据流如何无缝地流向Elasticsearch

    Flink的Elasticsearch Sink是用于将Flink数据流(DataStream)中的数据发送到Elasticsearch的组件。它是Flink的一个连接器(Connector),用于实现将实时处理的结果或数据持续地写入Elasticsearch集群中的索引中。 下面是一些关于Flink的Elasticsearch Sink的基础概念: 数据源(Source) :Flink数据流

    2024年02月20日
    浏览(54)
  • 【Flink】详解Flink任务提交流程

    通常我们会使用 bin/flink run -t yarn-per-job -c com.xxx.xxx.WordCount/WordCount.jar 方式启动任务;我们看一下 flink 文件中到底做了什么,以下是其部分源码 可以看到,第一步将相对地址转换成绝对地址;第二步获取 Flink 配置信息,这个信息放在 bin 目录下的 config. sh 中;第三步获取 JV

    2024年02月14日
    浏览(44)
  • 深入理解 Flink(五)Flink Standalone 集群启动源码剖析

    深入理解 Flink 系列文章已完结,总共八篇文章,直达链接: 深入理解 Flink (一)Flink 架构设计原理 深入理解 Flink (二)Flink StateBackend 和 Checkpoint 容错深入分析 深入理解 Flink (三)Flink 内核基础设施源码级原理详解 深入理解 Flink (四)Flink Time+WaterMark+Window 深入分析 深入

    2024年02月02日
    浏览(52)
  • 深入理解Flink IntervalJoin源码

    IntervalJoin基于connect实现,期间会生成对应的IntervalJoinOperator。 并且会根据给定的自定义Function构建出对应的TwoInputTransformation,以便能够参与Transformation树的构建。 作为ConnectedStreams,一旦left or right流中的StreamRecord抵达,就会被及时处理: 两者的处理逻辑是相同的: 先取出当

    2024年02月12日
    浏览(46)
  • 深入理解Flink Mailbox线程模型

    Mailbox线程模型通过引入阻塞队列配合一个Mailbox线程的方式,可以轻松修改StreamTask内部状态的修改。Checkpoint、ProcessingTime Timer的相关操作(Runnable任务),会以Mail的形式保存到Mailbox内的阻塞队列中。StreamTask在invoke阶段的runMailboxLoop时期,就会轮询Mailbox来处理队列中保存的M

    2024年02月12日
    浏览(42)
  • Flink系列之:深入理解ttl和checkpoint,Flink SQL应用ttl案例

    Flink TTL(Time To Live)是一种机制,用于设置数据的过期时间,控制数据在内存或状态中的存活时间。通过设置TTL,可以自动删除过期的数据,从而释放资源并提高性能。 在Flink中,TTL可以应用于不同的组件和场景,包括窗口、状态和表。 窗口:对于窗口操作,可以将TTL应用于

    2024年02月03日
    浏览(57)
  • Flink(二)1.13.5二种部署方式(Standalone、Standalone HA )、四种提交任务方式(前两种及session和per-job)验证详细步骤

    一、Flink 专栏 Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。 1、Flink 部署系列 本部分介绍Flink的部署、配置相关基础内容。 2、Flink基础系列 本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。 3、

    2024年02月16日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包