134基于matlab的时间序列预测

这篇具有很好参考价值的文章主要介绍了134基于matlab的时间序列预测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

基于matlab的时间序列预测,包括最小二乘支持向量机和粒子群优化支持向量机及改进的粒子群优化支持向量机。输出测试结果,具有GUI可视化界面。程序已调通,可直接运行。 

134基于matlab的时间序列预测,matlab工程应用,matlab,算法,开发语言,支持向量机,时间序列预测,粒子群优化,改进粒子群优化

134matlab时间序列预测粒子群优化 (xiaohongshu.com)文章来源地址https://www.toymoban.com/news/detail-793695.html

到了这里,关于134基于matlab的时间序列预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 时序预测 | MATLAB实现基于PSO-GRU、GRU时间序列预测对比

    效果一览 基本描述 MATLAB实现基于PSO-GRU、GRU时间序列预测对比。 1.MATLAB实现基于PSO-GRU、GRU时间序列预测对比; 2.输入数据为单变量时间序列数据,即一维数据; 3.运行环境Matlab2020及以上,依次运行Main1GRUTS、Main2PSOGRUTS、Main3CDM即可,其余为函数文件无需运行,所有程序放在一个

    2024年02月10日
    浏览(47)
  • 时序预测 | MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价)

    预测结果 基本介绍 MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价) 1.MATLAB实现基于RF随机森林的时间序列预测-递归预测未来(多指标评价); 2.运行环境Matlab2018及以上,data为数据集,单变量时间序列预测; 3.递归预测未来数据,可以控制预测未来大小的数

    2024年02月12日
    浏览(45)
  • 时序预测 | Matlab基于BiTCN-LSTM双向时间卷积长短期记忆神经网络时间序列预测

    预测效果 基本介绍 1.Matlab基于BiTCN-LSTM双向时间卷积长短期记忆神经网络时间序列预测(完整源码和数据),单变量时间序列预测,运行环境matlab2023及以上,excel数据,方便替换; 2.评价指标RMSE、MAPE、MAE、MSE、R2等; 3.程序语言为matlab,程序可出预测效果图,误差分析图。

    2024年03月20日
    浏览(56)
  • 时序预测 | MATLAB实现基于GRU门控循环单元的时间序列预测-递归预测未来(多指标评价)

    预测结果 基本介绍 1.Matlab实现GRU门控循环单元时间序列预测未来; 2.运行环境Matlab2020及以上,data为数据集,单变量时间序列预测; 3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测; 4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标。 运行环

    2024年02月12日
    浏览(45)
  • 区间预测 | MATLAB实现基于QRF随机森林分位数回归多变量时间序列区间预测模型

    效果一览 基本介绍 1.Matlab实现基于QRF随机森林分位数回归多变量时间序列区间预测模型; 2.基于随机森林回归(QRF)分位数时间序列区间预测,Matlab代码,单变量输入模型,data为数据集,QRFNTS为主程序,其余为函数文件,无需运行; 3.评价指标包括:R2、MAE、MAPE、MSE和区间

    2024年02月15日
    浏览(56)
  • 时序预测 | MATLAB实现基于CNN卷积神经网络的时间序列预测-递归预测未来(多指标评价)

    预测结果 基本介绍 1.Matlab实现CNN卷积神经网络时间序列预测未来; 2.运行环境Matlab2018及以上,data为数据集,单变量时间序列预测; 3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测; 4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标。 运行环

    2024年02月13日
    浏览(43)
  • 基于CNN-GRU-Attention的时间序列回归预测matlab仿真

    目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 CNN(卷积神经网络)部分 4.2 GRU(门控循环单元)部分 4.3 Attention机制部分 5.算法完整程序工程 matlab2022a          CNN-GRU-Attention模型结合了卷积神经网络(CNN)、门控循环单元(GRU)和注意力

    2024年02月22日
    浏览(44)
  • 【Matlab】基于卷积神经网络的时间序列预测(Excel可直接替换数据)

    基于卷积神经网络(Convolutional Neural Network,CNN)的时间序列预测是一种用于处理时间序列数据的深度学习方法。与传统的时间序列预测方法相比,CNN能够自动提取输入时间序列中的相关特征,从而实现更准确的预测。下面详细介绍基于CNN的时间序列预测的原理: 时间序列数

    2024年02月15日
    浏览(45)
  • 基于GRU门控循环网络的时间序列预测matlab仿真,对比LSTM网络

    目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 LSTM:     GRU     matlab2022a         门控循环单元(Gated Recurrent Unit,简称GRU)是一种用于序列建模和预测的递归神经网络(RNN)变体。GRU通过引入门控机制,克服了传统RNN在处

    2024年02月11日
    浏览(41)
  • 【MATLAB第2期】源码分享#基于LSTM时间序列单步预测,含验证和预测未来

    matlab2020a + cpu 单列数据,2018/10~2018/12 共三个月,92个数据。 ​ 样本标准化处理,其中,前85个数据作为训练样本,来验证后7个数据效果。最后预测未来7个数据。 numTimeStepsTrain = floor(85);%85数据训练 ,7个用来验证 dataTrain = data(1:numTimeStepsTrain+1,:);% 训练样本 dataTest = data(numTime

    2024年02月05日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包