pytorch框架:conv1d、conv2d的输入数据维度是什么样的

这篇具有很好参考价值的文章主要介绍了pytorch框架:conv1d、conv2d的输入数据维度是什么样的。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Conv1d

Conv1d 的输入数据维度通常是一个三维张量,形状为 (batch_size, in_channels, sequence_length),其中:

batch_size 表示当前输入数据的批次大小;
in_channels 表示当前输入数据的通道数,对于文本分类任务通常为 1,对于图像分类任务通常为 3(RGB)、1(灰度)等;
sequence_length 表示当前输入数据的序列长度,对于文本分类任务通常为词向量的长度,对于时序信号处理任务通常为时间序列的长度,对于图像分类任务通常为图像的高或宽。
具体来说,Conv1d 模块会对第二维和第三维分别进行一维卷积操作,保留第一维(即批次大小)不变,输出一个新的三维张量,形状为 (batch_size, out_channels, new_sequence_length),其中 out_channels 表示卷积核的数量,new_sequence_length 表示卷积后的序列长度。

示例:

import torch
import torch.nn as nn

class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv = nn.Sequential(
            nn.Conv1d(in_channels=1, out_channels=16, kernel_size=2),
            nn.ReLU(),
            # nn.MaxPool1d(kernel_size=2),
            nn.Conv1d(in_channels=16, out_channels=32, kernel_size=2),
            nn.ReLU(),
            # nn.MaxPool1d(kernel_size=2)
        )
        self.fc = nn.Linear(128, 2)

    def forward(self, x):
        x = x.unsqueeze(1)
        x = self.conv(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        return x
x = torch.randn(200,6)
# x = x.unsqueeze(1)
net = Net()
output = net(x)
print(x.shape)

Conv2d

在 PyTorch 中,使用 nn.Conv2d 创建卷积层时,输入数据的维度应该是 (batch_size, input_channels, height, width)。其中,

batch_size 表示当前输入数据的批次大小;
input_channels 表示当前输入数据的通道数,对于彩色图像通常为 3(RGB),对于灰度图像通常为 1;
height 和 width 分别表示输入数据的高和宽。因此,在 PyTorch 框架中,Conv2d 的输入数据维度应该是一个四维张量,形状为 (batch_size, input_channels, height, width)。文章来源地址https://www.toymoban.com/news/detail-793741.html

到了这里,关于pytorch框架:conv1d、conv2d的输入数据维度是什么样的的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • pytorch复现_conv2d

    2024年02月06日
    浏览(44)
  • 【PyTorch】nn.Conv2d函数详解

    CONV2D官方链接 in_channels:输入的通道数,RGB 图像的输入通道数为 3 out_channels:输出的通道数 kernel_size:卷积核的大小,一般我们会使用 5x5、3x3 这种左右两个数相同的卷积核,因此这种情况只需要写 kernel_size = 5这样的就行了。如果左右两个数不同,比如3x5的卷积核,那么写作

    2024年01月22日
    浏览(39)
  • pytorch中 nn.Conv2d的简单用法

    参数介绍 : in_channels :卷积层输入通道数 out_channels :卷积层输出通道数 kernel_size :卷积层的卷积核大小 padding :填充长度 stride :卷积核移动的步长 dilation :是否采用空洞卷积 groups :是否采用分组卷积 bias :是否添加偏置参数 padding_mode : padding 的模式 如果输入大小为:

    2024年02月11日
    浏览(43)
  • Pytorch中的卷积与反卷积(conv2d和convTranspose2d)

    卷积是特征提取的常用操作,卷积可以改变图片的通道和大小,相比全连接操作,卷积可以减少计算量,并且充分融合图像的局部特征。    

    2024年02月06日
    浏览(38)
  • 一维卷积神经网络理解(torch.nn.Conv1d)

    in_channels : (int)输入数据的通道数,即对某条训练数据来说由多少组向量表示。例如对于由一维向量表示的一条数据来说,通道数为1;对于文本数据来说,一个句子是由m个单词组成,那么通道数就可以是m out_channels : (int)卷积产生的通道数,可以理解为卷积核的个数 kernel_siz

    2023年04月08日
    浏览(45)
  • CONV1D一维卷积神经网络运算过程(举例:n行3列➡n行6列)

    作者:CSDN @ _养乐多_ 背景 一维卷积的运算过程网上很多人说不清楚,示意图画的也不清楚。因此,本人针对一维卷积的过程,绘制了计算过程,以我的知识量解释一下 pytorch 中 Conv1d() 函数的机理。 Conv1d() 计算过程 假设我们现在有 n 行,3列数据。n 行可以是 n 个点,也可以

    2024年02月06日
    浏览(40)
  • nn.Conv2d详解

    nn.Conv2d  是 PyTorch 中的一个卷积层,用于实现二维卷积操作。其主要参数有: in_channels :表示输入图像的通道数,也就是输入特征图的深度。 out_channels :表示输出特征图的通道数,也就是卷积核的个数。 kernel_size :表示卷积核的大小;可以是一个整数,表示正方形卷积核的

    2024年02月05日
    浏览(44)
  • 【知识点】nn.Conv2d参数设置

    reference   in_channels   这个很好理解,就是输入的四维张量[N, C, H, W]中的C了,即输入张量的channels数。这个形参是确定权重等可学习参数的shape所必需的。 out_channels   也很好理解,即期望的四维输出张量的channels数。 kernel_size   卷积核的大小,一般我们会使用5x5、3x3这

    2024年02月12日
    浏览(36)
  • 在树莓派上实现numpy的conv2d卷积神经网络做图像分类,加载pytorch的模型参数,推理mnist手写数字识别,并使用多进程加速

    这几天又在玩树莓派,先是搞了个物联网,又在尝试在树莓派上搞一些简单的神经网络,这次搞得是卷积识别mnist手写数字识别 训练代码在电脑上,cpu就能训练,很快的: 然后需要自己在dataset里导出一些图片:我保存在了mnist_pi文件夹下,“_”后面的是标签,主要是在pc端导

    2024年02月07日
    浏览(35)
  • 分类预测 | MATLAB实现1D-2D-CNN-GRU的多通道输入数据分类预测

    分类效果 基本介绍 结合1D时序-2D图像多模态融合的CNN-GRU故障识别算法,基于一维时序信号和二维图像多元信息融合的卷积神经网络结门控循环单元网络的数据分类预测/故障识别算法。要求2020版以上。 采用双支路输入,一路为图像输入经CNN提取特征,一路为特征序列输入经

    2024年02月12日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包