光学 | 联合Ansys Zemax及Lumerical应对AR/VR市场挑战

这篇具有很好参考价值的文章主要介绍了光学 | 联合Ansys Zemax及Lumerical应对AR/VR市场挑战。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

光学 | 联合Ansys Zemax及Lumerical应对AR/VR市场挑战,zemax,ANSYS,Lumerical,ar,vr,Ansys,光学,Zemax,Lumerical,知识干货

当前的增强现实和虚拟现实(AR/VR)市场涵盖了广泛的应用趋势,设计人员和各企业在努力寻找非传统解决方案,以满足主流消费者不断变化的需求。

对于AR头戴设备等可穿戴解决方案,设计思路通常源于对小巧轻量化系统的需求,因此它们不仅佩戴舒适,甚至外观也很时尚。此外,这些解决方案还需要适应各种照明条件,例如需要在阳光明媚的天气下佩戴设备时,确保AR图像仍然清晰可见。而VR也涉及一些相同的考量因素,同时还特别强调实现高分辨率和景深,以及超越单眼单个图像位置的当前限制。

随着这些技术的不断成熟,设计人员需要采用功能强大、灵活的软件解决方案对光学系统的所有组件进行完整仿真,以便将新产品和功能推向市场。Ansys Zemax OpticStudio可提供光线追迹,用于仿真光线穿过复杂系统的路径,而Ansys Lumerical则可提供新型光子元件的完整仿真,例如AR/VR设备中所用的衍射组件。

Ansys持续对这两款产品进行改进,帮助它们比以往更好地协同工作。利用OpticStudio的动态链接插件,用户可以将有关Lumerical仿真的所有数据直接纳入OpticStudio系统设计,从而为团队提供强大的工作流程,帮助他们开发更出色的AR/VR产品,并加快产品上市进程。

纳米级与宏观级设计软件之间的互操作

首先,我们一起来了解一些背景信息。当在Lumerical中设计纳米级设备以适应OpticStudio中设计的大型系统时,将分析数据从一款软件转移到另一款软件是很有帮助的。一段时间以来,Ansys Zemax通过以下高级工作流程实现了Lumerical和OpticStudio之间的互操作性:

  • 使用Lumerical设计和分析1D或2D光栅

  • 定义光栅参数,以控制其设计的几何结构

  • 使用数据文件(.JSON)将光栅参数传递到OpticStudio,并开始进行光线追迹

光学 | 联合Ansys Zemax及Lumerical应对AR/VR市场挑战,zemax,ANSYS,Lumerical,ar,vr,Ansys,光学,Zemax,Lumerical,知识干货

图1:Ansys Lumerical和Lumerical FDTD可以分别分析2D和1D衍射光栅,并与Ansys Zemax OpticStudio协调参数数据以进行光线追迹计算

在端到端系统设计中,OpticStudio使用来自Lumerical的光栅参数,将衍射光栅的光学属性直接渲染到OpticStudio用户界面中。这些参数包括详细的电磁场响应。利用这些数据,用户可以在OpticStudio中对元件进行详细的光线追迹。您可以将更新的.JSON文件传输到包含最新纳米级设计参数的OpticStudio中,为Lumerical设计的每次迭代重复该流程。

 OpticStudio与Lumerical之间的自动数据交换

因此,.JSON文件可以基于Lumerical分析高效地将数据导入OpticStudio。但是,如果您不希望手动添加将文件从一个应用传输到另一个应用的步骤,该怎么办呢?

只要Lumerical和OpticStudio在同一台计算机上,您现在就可以使用OpticStudio动态链接插件自动执行这些数据交换。基于动态链接库(DLL)API,此插件会告知OpticStudio在准备好计算其设计所需的光栅数据时调用Lumerical,然后根据它从Lumerical检索的参数执行光线追迹。如果您在任何时候更新OpticStudio侧的参数,OpticStudio都会自动将新设置发送到Lumerical,检索新数据,并使用动态链接相应地更新系统设计。

光学 | 联合Ansys Zemax及Lumerical应对AR/VR市场挑战,zemax,ANSYS,Lumerical,ar,vr,Ansys,光学,Zemax,Lumerical,知识干货

图2:动态链接插件(中间)可在OpticStudio和Lumerical之间调用、缓存和插入数据

该工作流程还可通过仅计算Lumerical数据集所需的数据,而无需多次计算相同的数据,从而节省时间。例如,如果Lumerical显示光线以30度角入射到光栅上,则OpticStudio仅计算30度角及其波长的光线。然后将计算结果与原始数据集一起存储在存储器中。这意味着,下次显示光线以相同角度入射到光栅时,OpticStudio可以通过插入现有计算结果来加速光线追迹。

通过动态链接插件实现的自动双向数据交换所带来的效率,可以为包含OpticStudio和Lumerical在内的设计工作流带来巨大的优势:

  • 自动输入参数可减少人工成本和人为错误

  • 减少应用之间的切换——除了创建或更新Lumerical设计,设计人员可以选择主要在OpticStudio中开展工作

  • 更快的开发周期以及更少的错误和延迟,为创新留出更多时间,并有助于产品更快地达到最佳制造标准点文章来源地址https://www.toymoban.com/news/detail-793931.html

到了这里,关于光学 | 联合Ansys Zemax及Lumerical应对AR/VR市场挑战的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Ansys Lumerical | 用于增强现实系统的表面浮雕光栅

    在本示例中,我们使用 RCWA 求解器设计了一个斜面浮雕光栅 (SRG),它将用于将光线耦合到单色增强现实 (AR) 系统的波导中。光栅的几何形状经过优化,可将正常入射光导入-1 光栅阶次。 然后我们将光栅特性导出为 Lumerical Sub-Wavelength Model (LSWM) JSON 格式,以便在 Speos 的

    2024年02月04日
    浏览(37)
  • 新时代商业市场:AR技术的挑战与机遇并存

    随着科技的不断发展,增强现实(AR)技术逐渐成为当今社会的一个重要组成部分。AR技术能够将虚拟世界与现实世界相结合,为人们提供更加丰富、多样化的体验。在新时代的社会商业市场中,AR技术也正逐渐被应用于各种商业活动中,为商业发展带来了新的机遇和挑战。本

    2024年02月04日
    浏览(23)
  • Ansys Zemax | NSC 非序列矢高图用户分析

    本文介绍如何使用 NSC 矢高图用户分析功能在非序列模式下测量和显示对象的矢高。了解此功能的基础知识,包括如何设置复杂 CAD 零件的文件以获取特定面的矢高值。 (联系我们获取文章附件) 介绍 OptocStudio 的序列模式具有表面矢高分析功能,该功能将表面从局部顶点的矢

    2024年02月07日
    浏览(24)
  • Zemax光学设计(一)——单透镜设计

      设计优化一个玻璃材料为N-BK7,F数为4的单透镜,满足以下规格: 规格 约束 焦距 100 mm 半视场角(SFOV) 5° 波长 632.8 nm(HeNe) 中心厚度 2 mm ~ 12 mm 边缘厚度 2 mm 优化标准 全视场 RMS 均方根半径平均值 物体位置 无穷远   在序列模式设计中,每个光学系统从物面(OBJ)开

    2023年04月22日
    浏览(27)
  • Zemax光学设计(十二) —— 激光扫描物镜设计

           本文从已有的激光扫描镜头结构入手,使用缩放法对设计进行优化,达到设计要求。通过本次设计学习如何通过系统分析结果进行下一步优化,以及如何进行优化。       焦距160、全视场 40°、入瞳直径 16mm、工作波长10.6μm(CO2激光)       1、物距 -∞、焦距

    2024年01月16日
    浏览(39)
  • Zemax光学设计(十五) —— 三片摄影物镜(1)

    设计步骤可以分为两步: 1、 根据初级像差理论,通过解七个像差方程和一个光焦度方程求解一个初始结构;        但是这里与 Richard Ditteon 方法不同,这里只解初级位置色差、初级倍率色差以及初级场曲三个像差方程和一个光焦度方程,确定三片物镜的光焦度分配。 其

    2024年02月06日
    浏览(24)
  • Ansys Zemax | 手机镜头设计 - 第 2 部分:使用 OpticsBuilder 实现光机械封装

    本文是3篇系列文章的一部分,该系列文章将讨论智能手机镜头模块设计的挑战,从概念、设计到制造和结构变形的分析。本文是三部分系列的第二部分。概括介绍了如何在 CAD 中编辑光学系统的光学元件以及如何在添加机械元件后使用 Zemax OpticsBuilder 分析系统。展示案例是来

    2024年02月11日
    浏览(25)
  • Ansys Zemax | 设计抬头显示器时要使用哪些工具 – 第二部分

     本文为使用OpticStudio工具设计优化HUD抬头显示器系统的第二部分,主要包含演示了如何使用OpticStudio工具设计分析抬头显示器(HUD)性能,即全视场像差(FFA)和NSC矢高图。 (联系我们获取文章附件) 在第一部分中,我们主要介绍了如何以逆向方式对于HUD系统进行建模,下

    2024年02月09日
    浏览(30)
  • 你真的懂面形误差PV和RMS的计算方法吗?均方根(RMS)与方差、标准差有什么区别?Zemax中的波前RMS是什么?(光学测量、光学设计必看)

    本文讲述了光学加工和检测过程 中, 元件面形误差PV和RMS的计算方法 , RMS与方差、标准差有什么区别 ,以及 Zemax中的波前RMS是怎么计算的、与上述RMS有什么差异 等。属于光学检测必看的知识点。 PV是英文单词Peak-to-Veally(从峰到谷)的缩写,表示元件面形误差矩阵  中元素

    2024年02月04日
    浏览(32)
  • AR的光学原理?

    AR眼镜的光学成像系统由 微型显示屏和 光学镜片 组成 ,可以将其理解为智能手机的屏幕。 增强现实,从本质上说,是将设备生成的影像与现实世界进行叠加融合。这种技术基本就是通过光学镜片组件对微型显示屏幕发出的光线束进行反射、折射、衍射,最终投射到人的视网

    2024年02月06日
    浏览(29)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包