opencv_模型训练

这篇具有很好参考价值的文章主要介绍了opencv_模型训练。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

文件夹
  • opencv训练文件
    • xml
  • negdata
  • posdata
说明

negdata目录: 放负样本的目录
posdata目录: 放正样本的目录
xml目录: 新建的一个目录,为之后存放分类器文件使用
neg.txt: 负样本路径列表
pos.txt: 正样本路径列表
pos.vec: 后续自动生成的样本描述文件
opencv_createsamples.exe: 生成样本描述文件的可执行程序(opencv自带)
opencv_haartraining.exe: 样本训练的可执行程序(opencv自带)文章来源地址https://www.toymoban.com/news/detail-794519.html

步骤
  1. 生成文件目录:
    在posdata文件夹中执行dir /b/s/p/w *.jpg > pos.txt
    在negdata文件夹中执行dir /b/s/p/w *.jpg > neg.txt
  2. 文件拷贝
    拷贝生成的文件到“opencv训练文件”文件夹下
  3. 修改拷贝的文件
    将pos.txt的jpg替换为jpg 1 0 0 20 20
  4. 在cmd命令中运行以下命令
opencv_createsamples.exe -vec pos.vec -info pos.txt -num 18500 -w 20 -h 20
opencv_createsamples.exe -vec neg.vec -info neg.txt -num 10500 -w 50 -h 50
-info,指样本说明文件
-vec,样本描述文件的名字及路径
-num,总共几个样本,要注意,这里的样本数是指标定后的20x20的样本数,而不是大图的数目,其实就是样本说明文件第2列的所有数字累加
-w -h指明想让样本缩放到什么尺寸。这里的奥妙在于你不必另外去处理第1步中被矩形框出的图片的尺寸,因为这个参数帮你统一缩放!(我们这里准备的样本都是20*20)
  1. 新建文件traincascade.bat
opencv_traincascade.exe -data xml -vec pos.vec -bg neg.txt -numPos 500 -numNeg 656 -numStages 20 -w 20 -h 20 -mode ALL

pause
  1. 将第3步修改的文件改回原来的样子
  2. 双击traincascade.bat开始训练(训练结束后会在xml目录下生成如图文件(其中cascade.xml就是我们训练得到的分类器))

到了这里,关于opencv_模型训练的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • [软件工具]opencv-svm快速训练助手教程解决opencv C++ SVM模型训练与分类实现任务支持C# python调用

    opencv中已经提供了svm算法可以对图像实现多分类,使用svm算法对图像分类的任务多用于场景简单且对时间有要求的场景,因为opencv的svm训练一般只需要很短时间就可以完成训练任务。但是目前网上没有一个工具很好解决训练问题,大部分需要自己编程去实现训练任务,这个对

    2024年02月06日
    浏览(59)
  • 分类模型训练pil、torchvision.transforms和opencv的resize

    参考:https://blog.csdn.net/weixin_41012399/article/details/126049885 https://www.cnpython.com/qa/1291644 https://blog.csdn.net/weixin_44966641/article/details/125084573 https://blog.csdn.net/IEEE_FELLOW/article/details/115536987 训练时用pil读取图片,使用torchvision.transforms.Resize 进行数据处理。因为transforms.Resize当输入为PIL图像

    2024年02月09日
    浏览(48)
  • 使用C++和OpenCV进行人脸识别,包含模型训练与调用过程

    人脸识别是计算机视觉领域的一个重要应用,可以用于安全系统、人脸解锁和人脸表情分析等方面。本教程将向您展示如何使用C++和OpenCV库实现基本的人脸识别功能。我们将分为两部分,首先是模型训练过程,然后是调用过程。 安装OpenCV和C++开发环境: 在开始之前,请确保

    2024年02月09日
    浏览(47)
  • opencv 案例实战02-停车场车牌识别SVM模型训练及验证

    1. 整个识别的流程图: 2. 车牌定位中分割流程图: 三、车牌识别中字符分割流程图: 下载车牌相关字符样本用于训练和测试,本文使用14个汉字样本和34个数字跟字母样本,每个字符样本数为40,样本尺寸为28*28。 数据集下载地址 https://download.csdn.net/download/hai411741962/88248392

    2024年02月11日
    浏览(37)
  • OpenCV人脸识别,训练模型为cv2.face.LBPHFaceRecognizer_create()

    OpenCV内部自带有三种人脸检测方式:LBPH人脸识和其他两种方法(Eigen人脸识别,FisherFace人脸识别)本次主要说明第一种方式LBPH检测。 1.创建需要训练的图片的集文件夹,和识别功能测试图片集的文件夹。 图(1)训练图集文件夹   图(1.1)taylorswift照片(尽量选用背景没其

    2024年02月07日
    浏览(51)
  • 基于opencv与机器学习的摄像头实时识别数字!附带完整的代码、数据集和训练模型!!

    使用摄像头实时识别数字算是目标检测任务,总体上分为两步,第一步是检测到数字卡片的位置,第二步是对检测到的数字卡片进行分类以确定其是哪个数字。在第一步中主要涉及opencv的相关功能,第二步则使用机器学习的方式进行分类。 重点操作是使用轮廓查找函数,获取

    2024年02月15日
    浏览(71)
  • OpenCV分类检测器训练

    OpenCV中有两个程序可以训练级联分类器: opencv_haartraining 和opencv_traincascade。opencv_traincascade 是一个新程序,使用OpenCV 2.x API 以C++ 编写。这二者主要的区别是 opencv_traincascade 支持 Haar、Hog和 LBP(Local Binary Patterns) 三种特征,并易于增加其他的特征。与Haar特征相比,LBP特征是整数

    2024年02月17日
    浏览(47)
  • OpenCV人脸识别项目(训练+测试)

    图片来自网上,如果侵权,告知则删除 批量修改文件名(常见文件操作,可以学习一下) 进入正题  (一)读取图片 (二)灰度转换 (三)修改尺寸 (四)绘制矩形 (五)人脸检测 (六)检测多个人脸 (七)视频检测  (八)拍照保存 准备数据集 训练集train  注意:第

    2024年02月04日
    浏览(45)
  • 人脸识别(opencv--LBPH方法训练)

    一、准备数据 1.利用人脸检测方法,先将图像的人脸部分截取成图像 2.批量读取图像,制作成图像与标签对应的列表 二、开始训练 3.训练(使用opencv自带的训练方法) 4.调用 HOG人脸检测器 1.利用人脸检测方法,先将图像的人脸部分截取成图像 选用HOG的目的是为了方便而已,你完全

    2024年02月05日
    浏览(88)
  • OpenCV的级联分类器训练

    使用增强级联的弱分类器包括两个主要阶段:训练和检测阶段。对象检测教程中有描述使用基于 HAAR 或 LBP 模型的检测阶段。这里主要介绍训练增强分类器级联所需的功能,包括:准备训练数据、执行实际模型训练、可视化训练。 目录 一、训练数据准备 1、负样本 2、正样本

    2024年02月13日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包